
NASA-GB-001-96

Software
Program

Software Management Guidebook

November 1996

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON, DC

Software
Program

Software Management Guidebook

November 1996

NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

WASHINGTON, DC

NASA-GB-001-96 ii

CSC 10034618

iii NASA-GB-001-96

Foreword

This document is a product of the National Aeronautics and Space Administration (NASA)
Software Program, an Agency-wide program to promote continual improvement of software
engineering within NASA. The goals and strategies for this program are documented in the
NASA Software Strategic Plan, July 13, 1995.

Additional information is available from the NASA Software IV&V facility on the World Wide
Web site http://www.ivv.nasa.gov/.

v NASA-GB-001-96

Table of Contents

Page

Foreword .. iii

1. Introduction..1

1.1 Background ..1

1.2 Purpose...1

1.3 Scope..2

1.4 Overview..2
1.4.1 Organization...2
1.4.2 Terminology...2
1.4.3 Notation..2

2. Software Engineering Process Requirements and Infrastructure...5

2.1 General Requirements..5

2.2 Specific Required Activities and Products ..6
2.2.1 Management Activities ..8
2.2.2 Technical Activities ...8
2.2.3 Software Process Improvement Activities ...8
2.2.4 System-Level Considerations...8

2.3 Software Process Responsibilities ...10
2.3.1 Level 1: NASA Headquarters, IV&V Facility, and Software Working Group......11
2.3.2 Level 2: Center and Intra-Center Elements..12
2.3.3 Level 3: Branches and Software Projects...12

2.4 Process Assets..13

3. The Software Project’s Process..15

3.1 The Five-Step Project Process ...15

3.2 Documenting the Project’s Process—The Software Plan..17

4. Beginning to Plan the Project: Understanding the Scope of Work..21

4.1 Ascertaining Customer Requirements and Constraints ...21

4.2 Ascertaining Customer Goals and Objectives ...22

4.3 Understanding Management’s Risk Tolerance ..23

4.4 Understanding Products to be Delivered and Their Characteristics23
4.4.1 Documentation ...23
4.4.2 Software Product Releases...23
4.4.3 Milestone Reviews...24

5. Defining the Technical Approach ..25

5.1 Selecting an Appropriate Life-Cycle Model ..26

NASA-GB-001-96 vi

5.1.1 Waterfall Development Life-Cycle Model...28
5.1.2 Incremental Development Life-Cycle Model...30
5.1.3 Evolutionary Development Life-Cycle Model...32
5.1.4 Package-Based Development Life-Cycle Model ...34
5.1.5 Legacy System Maintenance Life-Cycle Model ..36

5.2 Selecting Appropriate Activities, Methods, and Products ...38
5.2.1 Software CI Requirements Definition and Analysis ..40
5.2.2 Software CI Design ..45
5.2.3 Software CI Implementation and Testing ..47
5.2.4 Software CI Qualification Testing ...53
5.2.5 Preparing for Software Delivery ..54
5.2.6 Software Product Validation and Verification...56
5.2.7 Software Configuration Management ..64
5.2.8 Software Quality Assurance...67
5.2.9 Milestone Reviews...68

6. Finishing the Software Plan—Defining the Management Approach ..75

6.1 Establishing the Software Project’s Organizational Structure ...76

6.2 Estimating and Scheduling the Work ..77

6.3 Planning Other Activities...80

6.4 Reviewing the Software Plan...83

7. Running the Project..85

7.1 Managing the Project ...86
7.1.1 Preparing the Software Team...86
7.1.2 Monitoring and Controlling the Project ...87
7.1.3 Communicating with Stakeholders ..88
7.1.4 Maintaining the Software Plan...90
7.1.5 Keeping Project Records..91

7.2 Closing Out the Project..92

Appendix A. Glossary..95

Appendix B. Building for Reuse..101

Appendix C. COTS, GOTS, Reused, and Other NDI Software Products103

C.1 COTS Software Products ..103

C.2 Evaluating COTS, GOTS, Reused, and Other NDI Software Products..........................105

C.3 Guidelines for Performing Required Activities Involving COTS, GOTS, Reused, and
Other NDI Software Products ...106

Appendix D. System-Level Considerations...109

D.1 System Requirements Analysis...109

D.2 System Design...109

D.3 Software CI and Hardware CI Integration and Testing...110

D.4 System Qualification Testing..110

vii NASA-GB-001-96

Abbreviations and Acronyms...113

References..115

NASA-GB-001-96 viii

Figures

Page

Figure 2–1. Required Software Process Activities ..6

Figure 2–2. System Life Cycle...9

Figure 2–3. Software Development Context..10

Figure 2–4. Software Maintenance or Enhancement Context ...10

Figure 3–1. The Five-Step Project Process ..16

Figure 3–2. Planning the Software Project ..18

Figure 3–3. Tailoring the Project’s Software Process..20

Figure 5–1. Phases and Activities ..26

Figure 5–2. Waterfall Development Life-Cycle Model ...29

Figure 5–3. Incremental Development Life-Cycle Model ...31

Figure 5–4. Evolutionary Development Life-Cycle Model ...33

Figure 5–5. Package-Based Development Life-Cycle Model..35

Figure 5–6. Legacy System Maintenance Life-Cycle Model...36

Figure 5–7. Primary Software Engineering Activities ...39

Figure 5–8. Software Engineering Support Activities ...39

Figure 6–1. Typical Software Project Organization...76

Figure 7–1. Running the Project ..85

Figure 7–2. Product Handovers ...89

Figure B–1. High-Reuse Life-Cycle Model ...102

ix NASA-GB-001-96

Tables

Page

Table 1–1. Use of Icons ...3

Table 2–1. Required Activities, Products, and Roles ..7

Table 2–2. Sampling of Software Products at Each Organizational Level....................................11

Table 3–1. Mapping the Five-Step Project Process to This Guidebook ..15

Table 4–1. Sample Project Objectives ...22

Table 5–1. Defining a Life Cycle...27

Table 5–2. Summary of Waterfall Development Life-Cycle Model..28

Table 5–3. Products and Milestone Reviews for the Waterfall Development Life-Cycle
Model..29

Table 5–4. Summary of Incremental Development Life-Cycle Model..30

Table 5–5. Products and Milestone Reviews for the Incremental Development Life-Cycle
Model..31

Table 5–6. Summary of Evolutionary Development Life-Cycle Model..32

Table 5–7. Products and Milestone Reviews for the Evolutionary Development Life-Cycle
Model..33

Table 5–8. Summary of Package-Based Development Life-Cycle Model34

Table 5–9. Major Products and Milestone Reviews for the Package-Based Development Life-
Cycle Model ...35

Table 5–10. Summary of Legacy System Maintenance Life-Cycle Model36

Table 5–11. Products and Milestone Reviews for the Legacy System Maintenance Life-Cycle
Model..37

Table 5–12. Structured Requirements Analysis Method ...41

Table 5–13. Object-Oriented Requirements Analysis Method ..42

Table 5–14. Prototyping Technique...43

Table 5–15. JAD Workshop Technique...44

Table 5–16. Structured Design Method ...46

Table 5–17. Object-Oriented Design Method..46

Table 5–18. Top-Down Method ..51

Table 5–19. Bottom-Up Method..51

Table 5–20. Functional Path Method...52

Table 5–21. Software Product V&V Summary ...57

NASA-GB-001-96 x

Table 5–22. Inspection Method ...58

Table 5–23. Walkthrough Method...58

Table 5–24. Document Review Method ..59

Table 5–25. Demonstration Method ..59

Table 5–26. Functional Testing Method..60

Table 5–27. Structural or Coverage Testing Method...61

Table 5–28. Statistical Testing Method ...61

Table 5–29. Regression Testing Method ...62

Table 5–30. Testing Methods vs. Testing Levels ..62

Table 5–31. The Cleanroom Method ...63

Table 5–32. Candidate Milestone Reviews ...70

Table 5–33. Meetings...71

Table 5–34. Presentations ..71

Table 5–35. Demonstrations ..72

Table 6–1. Three Levels of Estimates and Plans ...77

Table 6–2. Mini-Waterfall ...78

Table 6–3. Timeboxes..79

Table 6–4. Required Activities and Related Measures ..81

Table 6–5. Process Studies ..82

Table 7–1. Recommended Status Reports and Meetings...88

Table C–1. Guidelines for Using COTS, GOTS, Reused, and Other NDI Software Products....107

1 NASA-GB-001-96

1. Introduction

1.1 Background

he objective of every National Aeronautics and Space Administration (NASA) software
engineering project is to provide, to the customer, a software product that is engineered to
satisfy the customer’s requirements, within determined cost, schedule, and quality

guidelines.

The term software engineering encompasses new development, modification, reuse, re-
engineering, maintenance, and all other activities resulting in software products. Throughout
NASA, organizations engineer software products that cover a wide spectrum of characteristics
(Reference 1):

• Application domains include flight and embedded software, mission ground support
software, general support software, science analysis software, research software, and
administrative and Information Resources Management (IRM) software.

• Target operating environments encompass PC-based, mainframe-based, workstation-
based, and client/server-based solutions.

• Product sizes range from only a few thousand lines of code to more than a million.

• Cost and cycle-time requirements vary.

• Desired end-product qualitiesreusability, commercialization, and consequences of
software failure (from minor inconvenience to loss of a mission or loss of life)also
vary.

One significant lesson learned from many years of software engineering throughout NASA is that
no single solution can solve every problem. No one life-cycle model, analysis and design method,
testing method, product evaluation method, or degree of formality for documents and reviews is
appropriate for all NASA software projects. To accommodate these variations, each project must
tailor its software process to acknowledge customer requirements and constraints; goals and
objectives for cost, cycle time, and product qualities; and management’s tolerance for risk. Such
tailoring is the responsibility of the project’s software manager.

1.2 Purpose

The purpose of this NASA Software Management Guidebook is twofold. First, this document
defines the core products and activities required of NASA software projects. It defines life-cycle
models and activity-related methods but acknowledges that no single life-cycle model is
appropriate for all NASA software projects. It also acknowledges that the appropriate method for
accomplishing a required activity depends on characteristics of the software project.

Second, this guidebook provides specific guidance to software project managers and team leaders
in selecting appropriate life cycles and methods to develop a tailored plan for a software
engineering project.

T

NASA-GB-001-96 2

1.3 Scope

This handbook addresses the engineering of software products, where those products either
(1) comprise a software system for which this handbook governs the overall engineering effort or
(2) are part of a hardware-software system for which this handbook governs only the software
portion.

System engineering management issues are outside of the scope of this guidebook. Section 2.2.4
places the software life cycle in the context of the system life cycle, and Appendix Appendix D.
discusses the system-level considerations required of the software manager and team members.

This book also does not cover acquisition of software products; it covers development and
maintenance.

1.4 Overview

1.4.1 Organization

Chapter 2 of this guidebook summarizes the common elements of the overall NASA software
engineering process. Chapters 3 through 6 describe the NASA software engineering process in
somewhat more detail, including summary descriptions of required activities and products, and
recommended methods for performing those activities. Chapter 7 discusses running and then
closing out software projects.

Appendix Appendix A. is a glossary of software engineering terms that every software project
manager should understand. Appendix Appendix B. provides guidance for building software
components with reusability in mind. Appendix Appendix C. provides more detailed guidance
for incorporating non-developed items (NDIs) into software products. Appendix Appendix D.
lists additional considerations when the software under development is only part of a larger
system.

1.4.2 Terminology

Several terms have specific meanings in this document. These terms are used consistently to
emphasize and ensure understanding of the flexibility built into the software process common
requirements. Please refer to the glossary in Appendix Appendix A. for definitions and
discussion of the following key sets of terms:

• Development, maintenance, enhancement

• Life-cycle models, phases, activities, methods

• Software configuration items (CIs), systems

• Documentation, record

1.4.3 Notation

Table 1–1 explains the use of icons in this guidebook.

3 NASA-GB-001-96

Table 1–1. Use of Icons

!! A double exclamation mark highlights related tips that have
been shown effective on NASA programs.

ü A check mark highlights required software engineering
activities.

"
A pair of scissors highlights software process tailoring
information; that is, methods and techniques proven to be
effective on NASA programs and recommended for use in
performing a particular activity.

5 NASA-GB-001-96

2. Software Engineering Process Requirements and
Infrastructure

his chapter summarizes the common aspects of the overall NASA software engineering
process. The first two sections discuss key activities and products that are expected of
NASA software projects. The third section discusses the roles and responsibilities of

personnel at various organizational levels. The final section introduces the concept of a process
asset library (PAL).

2.1 General Requirements

Every software project must meet a number of general requirements in carrying out the detailed
required activities, for example

• The software team uses systematic, documented methods for all software engineering
activities. These methods are described or referenced in the project’s software plan.

• The software team applies standards for representing requirements; design; code; test
plans, procedures, and results; and other software products. These standards are
described or referenced in the software plan.

• During the course of the project, the software team identifies and evaluates NDIs,
including commercial-off-the-shelf (COTS), government-off-the-shelf (GOTS), and
reusable software products, as well as software products not created by project
personnel (for example, by other NASA or contractor personnel), for use in fulfilling
the project requirements. The scope of the search and the criteria to be used for
evaluation are as described in the software plan. Software products that meet the
criteria are used where practical. Incorporated software products must meet applicable
data rights and licensing requirements. Appendix Appendix C. discusses an approach
for developing systems that comprise predominantly NDI components.

• During the course of the project, the software team identifies opportunities for
developing software products for reuse and evaluates the benefits and costs of these
opportunities. Opportunities that provide cost benefits and are compatible with the
customer’s objectives are identified to the customer. The software requirements might
also state that the software team develop software products specifically for reuse.

• The software team identifies critical software CIs (or portions thereof) and develops
and implements a strategy that addresses the following critical issues:

– System resource utilization: critical system resource capacities or constraints are
imposed on the final product

– Safety: failure of the software could lead to a hazardous state

– Security: failure could lead to a breach of system security

– Privacy: failure could lead to a breach of system privacy

– Other critical characteristics

T

NASA-GB-001-96 6

 The software team develops an appropriate strategy for such software, including tests
and analyses, to ensure that the requirements, design, implementation, and operating
procedures for the identified software minimize or eliminate the potential for
hazardous or compromising conditions. The software team records the strategy in the
software plan, implements the strategy, and produces evidence, as part of required
software records, that the defined strategy has been carried out successfully.

• The software team records rationale that will be useful to the software operations and
maintenance (O&M) organization for key decisions made in specifying, designing,
implementing, and testing the software. The rationale includes trade-offs considered,
analysis methods, and other criteria used to make the decisions. The rationale is
recorded in documents, code comments, or other media that are transferable to the
software O&M organization.

2.2 Specific Required Activities and Products

The software manager establishes a project software engineering process that is based on the
NASA software process and consistent with the software requirements. The NASA software
process comprises three categories of activities:

1. Management

2. Technical

3. Software process improvement

Figure 2–1 illustrates the relationships among the activities; Table 2–1 summarizes the activities
and the primary products generated as a result of performing each activity.

 D
evelop initial project softw

are plan

Monitor and control software project
(maintain project software plan

and records as necessary)

Independently assure software products and activities (SQA)

Manage configuration (SCM)

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

Time

Validate and verify (V&V) software products

Participate in milestone reviews

D
eliver final

softw
are products

C
lose out softw

are project

Prepare software team

Figure 2–1. Required Software Process Activities

7 NASA-GB-001-96

Table 2–1. Required Activities, Products, and Roles

Activity Primary Products Key Roles
Software project

planning
• Software plan
• Project planning review

• Software manager
• Software team leader
• Software QA representative

Software CI
requirements
definition and
analysis

• Software CI requirements specification
• V&V records for requirements definition and analysis products
• Software requirements milestone review

• Software requirements analyst
• Software QA representative

Software CI design • Software CI design specification
• V&V records for design products
• Software design milestone review

• Software design architect
• Software detail designer
• Software QA representative

Software CI
implementation
and testing

• Unit-level design
• Implementation test plans, procedures
• Implemented, integrated, tested software
• V&V records for implementation and testing products
• Qualification test readiness milestone review

• Software implementer
• Software unit tester
• Software integrator and tester
• Software QA representative

Software CI
qualification testing

• Qualification test plan, procedures
• Qualification tested software
• V&V records for qualification testing products

• Software qualification tester
• Software QA representative

Preparation for
software delivery

• Executable software
• Software source files
• Version description
• As-built software description
• Software user’s guide

• Software configuration
manager

• Rest of software team
• Software QA representative

Software project
close-out

• Software project history
• Software project lessons learned and recommendations for

improvement
• Software project close-out data

• Software manager
• Software QA representative

Software product
validation and
verification (V&V)

• Software product V&V records • Software team
• Software QA representative

Software
configuration
management

• Software configuration management plan (part of the software
plan)

• Controlled software products
• Software configuration management records

• Software configuration
manager

• Rest of software team
• Software QA representative

Software quality
assurance

• Software quality assurance plan (part of the software plan)
• Software quality assurance records

• Software QA representative

Milestone reviews • Milestone reviews • Software manager
• Rest of software team
• Software QA representative

Software team
preparation

• Training records • Software manager
• Rest of software team
• Software QA representative

Project monitoring
and controlling

• Management indicators
• Project status reviews

• Software manager
• Software QA representative

Software process
improvement

• Software technology study plans and study results
• Defect causal analysis recommendations

• Entire software team
• Software QA representative

System-level
considerations

• System and operations concept, operational scenarios
• System requirements specification
• System design specification
• Hardware and software CI integration and test plan,

procedures
• System qualification test plan, procedures
• Qualification tested system
• V&V records for qualification testing products

• Entire software team
• Software QA representative

NASA-GB-001-96 8

2.2.1 Management Activities

The following are required management-related activities:

• Software project planning

• Software team preparation

• Software project monitoring and control

• Software project close-out

2.2.2 Technical Activities

The following are required technical activities, each of which produces one or more specific
software products. They may overlap, may be applied iteratively, may be applied differently to
different elements of software, and are not necessarily performed in the order listed. (Remember
that activities are not synonymous with phases. Refer to the Glossary (Appendix Appendix A.)
for definitions and discussion regarding activities versus phases.)

• Software CI requirements definition and analysis

• Software CI design

• Software CI implementation and testing

• Software CI qualification testing

• Preparation for software delivery

The following are required support activities that are performed in conjunction with each of the
above technical activities:

• Software product validation and verification (V&V)

• Milestone reviews

• Software configuration management (SCM)

• Software quality assurance (SQA)

2.2.3 Software Process Improvement Activities

Every software project presents an opportunity to study and improve the software process. One
mechanism used in the NASA software process improvement program is to study the application
of new technologies.1 Process studies are conducted any time an unproven life-cycle or activity-
related method is selected by the software manager. The NASA Software Process Improvement
Guidebook (Reference 2) describes the approach NASA uses to study and understand the effects
of new technologies on software products and processes.

2.2.4 System-Level Considerations

Figure 2–2 illustrates the concept of a system life cycle. This section clarifies some terms related
to the system life cycle.

1 A “new” technology is one that has not been proven to be effective in practice in a particular NASA application
area or domain. It may have been proven effective elsewhere, however.

9 NASA-GB-001-96

SYSTEM'S
OPERATIONAL

CONCEPT

DEVELOP SYSTEM
WITH INITIAL

OPERATIONAL
CAPABILITY

INSTALL AND USE
SYSTEM

MAINTAIN &
ENHANCE SYSTEM

AS NECESSARY

Figure 2–2. System Life Cycle

In this guidebook, the term system refers to the operational entity that the organization is
responsible for developing, maintaining, or enhancing. That is, if the organization is responsible
for developing several software and hardware CIs and is responsible for integrating them into an
operational entity, then the collection of those CIs is the system. If, however, the organization is
responsible for developing a single software CI, which may be integrated into (for example) a
ground support system by a different NASA organization, then the software CI itself is the
system referred to in this guidebook.

Some of the systems that NASA organizations develop, or maintain and enhance, include
multiple CIs. There may be a mix of software CIs and hardware CIs, or the system may be only
hardware or only software. This guidebook discusses the activities associated with the
development and with the maintenance and enhancement of the software CI elements of a
system, but also includes very high-level summaries of the relevant system-level activities to help
the reader understand the context in which the software effort may take place. When the system
comprises only software CIs, then most of the system- and CI-level products are one and the
same.

Development (see Figure 2–3) is the creation and installation of an operational system that meets
an initially defined set of system requirements. Once the system is operational, subsequent
changes are considered maintenance or enhancement (see Figure 2–4). Many of the maintenance
and enhancement activities are the same or similar to those used in development. The NASA
software process applies equally to development and to maintenance and enhancement efforts.
(The figures reflect the software emphasis of this guidebook.)

NASA-GB-001-96 10

NEW
OPERATIONAL

SOFTWARE
PRODUCT

SOFTWARE
PAL

REQUIREMENTS

REUSABLE OR
COTS

SOFTWARE

SOFTWARE
DEVELOPMENT

Figure 2–3. Software Development Context

UPDATED
OPERATIONAL

SOFTWARE PRODUCT

SOFTWARE
PAL

CHANGE
REQUESTS

REUSABLE OR
COTS

SOFTWARE

OPERATIONAL
SOFTWARE PRODUCT

SOFTWARE
MAINTENANCE &
ENHANCEMENT

Figure 2–4. Software Maintenance or
Enhancement Context

When the software being engineered is a part of a larger system, additional system-level
considerations may need to be taken into account. Appendix Appendix D. addresses those
considerations.

2.3 Software Process Responsibilities

The subsections that follow summarize the basic responsibilities for maintaining and using the
NASA software process at the various organizational levels. Table 2–2 provides examples of
software process-related products at each level.

11 NASA-GB-001-96

Table 2–2. Sampling of Software Products at Each Organizational Level

Level Products

1
Headquarters,
IV&V Facility, and
Software Working Group

• NASA Software Strategic Plan
• This Software Management Guidebook
• Other agency-wide software engineering

(management, development, and assurance)
guidebooks, plans, policies, and standards

• Domain guidance
• Independent in-progress assessments of high-

profile development projects’ activities and
products

• Software engineering training

2
Center and
Intra-Center Elements
(Directorates, Divisions)

• Software quality assurance plan (to include SQA
procedures), which is referenced by the software
plan and is administered by a center-level
software quality assurance organization that is
independent of the individual projects

• Approach for reviewing and approving projects’
software plans

• Approach for developing and approving lower
level standards, procedures, and plans

3
Branches and
Software Projects

• Software engineering (management and
development) standards and processes

• Software plan
• PAL and other related software assets
• Project-related software training
• Software products resulting from applying the

process defined by the plan

2.3.1 Level 1: NASA Headquarters, IV&V Facility, and Software Working Group

The NASA Software Strategic Plan (Reference 3), completed in July 1995, complements the
Agency-wide strategic vision and mission statements while focusing on software within NASA.
This plan was developed by the NASA Software Working Group (SWG) under the auspices of
the NASA Software Independent Validation and Verification (IV&V) Facility at Fairmont, West
Virginia, sponsored by the Office of Safety and Mission Assurance (OSMA) at Headquarters
(HQ). The goals and implementation strategies of the NASA Software Strategic Plan address
(1) defining and improving software engineering processes (including processes for management,
development, and quality assurance), (2) transferring software product and process technologies,
and (3) maintaining a core competency in software. Those three elements comprise the NASA
Software Program.

The NASA Software Working Group is the implementation vehicle for the NASA Software
Program. The role of the SWG is as follows:

• Define, refine, and implement the goals of the NASA Software Strategic Plan

• Provide guidance to all NASA software-related activities

NASA-GB-001-96 12

• Ensure that available software processes are disseminated

The SWG has one or two representatives from each center and is chaired by a member of the
IV&V Facility.

A 1993 survey of NASA Centers (Reference 1) found that NASA does not have a common set of
software standards that is used across the Agency in the manner of the Department of Defense’s
military standard (Reference 4). One focus of the NASA SWG is to produce guidebooks and
supporting training on the basis of NASA-wide experience in key areas such as project
management, assurance, risk management, and software process improvement (see Section 2.4
for examples).

2.3.2 Level 2: Center and Intra-Center Elements

For the most part, individual centers have given directorates, divisions, and offices the
responsibility for developing their own standards and common processes. According to the 1993
survey (Reference 1), two NASA centers (the Marshall Space Flight Center (MSFC) and the Jet
Propulsion Laboratory (JPL)) have written software development standards that are baselined at
the center level and include a formal waiver process. The other centers have software standards
and processes implemented at a lower organizational level. Center-level activities typically focus
on defining approaches for plan review and approval. For critical mission systems, however, the
SQA organization at each center has the responsibility to ensure that, throughout the life cycle of
the project, software engineering activities are performed and software products are prepared in
accordance with the software project’s software plan.

2.3.3 Level 3: Branches and Software Projects

Branch managers and software project managers share responsibility for developing and
approving lower level standards, procedures, and plans for implementing the software process in
their areas. They are responsible for the following:

• Identifying, developing, and maintaining those lower level standards, procedures, and
plans that are unique to a particular development effort and those that are common to
families of software products

• Providing training for their development efforts

• Establishing and maintaining local PALs that contain locally specific process assets

Lower level software engineering process functions define, develop, and implement needed
software process assets that are not provided in a higher level NASA PAL. They are also
responsible for defining, developing, and implementing a software process improvement
program that supports the needs of the projects and branches and for providing software-related
information required by higher level measurement and process improvement programs.

Each project must plan its own specific approach for accomplishing the software work assigned
to it. The approach must be documented in a software plan and must comply with the local and
higher level process requirements.

13 NASA-GB-001-96

2.4 Process Assets

The software team uses process assets from an experience-based PAL. A PAL is a compilation of
NASA estimating and planning models, historical data, life-cycle models, activity definitions,
product standards and templates, and examples of good practices that are available to a software
project for developing, maintaining, and implementing its defined process. A PAL may be
implemented at any and all organizational levels, as appropriate, within a NASA organization
responsible for systems development.

An organization’s PAL typically contains the following products:

• Higher level NASA process assets

• All of the local organization’s software process definition documents

• Software-related guidebooks, handbooks, and white papers, as they become available

• Recommended activity and method definitions and product standards applied within
the organization

• Training material related to the organization’s software process

• Plans and results from software process studies

• Other assets that the organization determines to be applicable

This Software Management Guidebook and other NASA headquarters-level software-related
products (for example, the NASA Software Measurement Guidebook (Reference 5) and the
NASA Software Process Improvement Guidebook (Reference 2)) are included in every NASA
PAL. Every PAL must also include copies of NASA Management Instruction (NMI) 2410.10B
and other software-related NMIs.

NASA’s Software Management Guidebook is a primary source of guidance to the manager in
preparing the project’s software plan (see Section 3.2) and selecting appropriate elements from
the PAL:

• Life-cycle models (for example, waterfall, iterative refinement, spiral)

• Milestone reviews (for example, requirements reviews, design reviews)

• Products and product formats (for example, degree of formality, packaging)

• Engineering methods (for example, structured approach, object-oriented approach, the
Cleanroom method)

• Product V&V methods (for example, peer review methods, testing methods)

• Product control methods (for example, degree of formality)

Using these assets, each software manager prepares a project-specific software plan that defines
the selected life-cycle model, methods, tools, and product standards the software team will use.
Managers may also use their organizations’ PALs (of varying degrees of formality and structure)
as sources of more detailed software process assets that have been tailored for specific
application domains. This common tailoring approach allows each software project to draw on
proven, successful methods appropriate to satisfy their customers’ needs in a predictable,
efficient, and cost-effective manner.

15 NASA-GB-001-96

3. The Software Project’s Process

his chapter summarizes the software project’s process, which includes required activities
from developing a software plan that meets the unique needs of each customer through
delivery of the final software product and close-out of the project. This chapter also

briefly discusses the project software plan, which documents the project’s process.

3.1 The Five-Step Project Process

Figure 3–1 is a summary of the five key steps required to take a software engineering project
from inception through final delivery and close-out. Subsequent chapters of this guidebook
expand on each of the steps. Table 3–1 maps the five steps to the applicable section of this
guidebook

Table 3–1. Mapping the Five-Step Project Process to This Guidebook

Project
Process Step Handbook Section

STEP 1 Chapter 4: Beginning to Plan the Project: Understanding the Scope of Work

STEP 2 Chapter 5: Defining the Technical Approach

STEP 3 Chapter 6: Finishing the Software Plan—Defining the Management Approach

STEP 4 Section 7.1: Managing the Project

STEP 5 Section 7.2: Closing Out the Project

T

NASA-GB-001-96 16

STEP 1 BEGIN TO PLAN THE PROJECT. UNDERSTAND THE SCOPE OF THE WORK.
(Chapter 4)

• Ascertain the customer’s requirements and constraints from the software requirements
specifications, discussions with the customer, etc.

• Ascertain the customer’s goals and objectives (overall cost, schedule, and product qualities)
primarily from discussions with the customer and higher levels of NASA.

• Understand management’s “risk tolerance level” (both the project team’s management and the

• Reach agreement with the customer regarding the products to be delivered and the goals for each
product with respect to product cost, schedule, and qualities.

• Document the customer’s requirements and constraints, goals and objectives, and management’s
risk tolerance level in the project’s software plan. Document the products to be delivered in the

STEP 2 DEFINE THE TECHNICAL APPROACH THAT BEST ACHIEVES STEP 1. (Chapter 5)

• Incorporate appropriate lessons learned from similar or related software projects.
• Select an appropriate life-cycle model.
• Populate the life-cycle model with appropriate technical activities, methods and techniques, and

products.
• Identify any software process improvement activities to be conducted (that is, variations from

recommended approaches or required standards).
• Review the technical process using the organization-defined review process.
• Iterate until all stakeholders (project team and customer) are satisfied with the technical process.
• Document the project’s technical process in the project’s software plan.

STEP 3 FINISH THE SOFTWARE PLAN. DEFINE THE MANAGEMENT APPROACH. (Chapter 6)

• Define and document the management approach to support the technical approach developed in
Step 2.
– Establish the software project’s organizational structure.
 Estimate and schedule the work.

– Identify and plan for team training.
– Identify and plan for risks.
– Select measures to facilitate monitoring and controlling the project.

• Review the estimates, schedule, and plan using the organization-defined review procedure.
• Iterate among Steps 1 through 3 until all stakeholders are satisfied with the plan.

STEP 4 RUN THE PROJECT (EXECUTE THE PROJECT’S SOFTWARE PLAN). (Section 7.1)

• Use the life-cycle milestone reviews and appropriate training to help ensure that project personnel
understand the products, activities and methods, responsibilities, etc. at each new life-cycle phase.

• Monitor and control the project based on the software plan.
• Review project status periodically with higher levels of management, the customer, and the

software team.
• Review the software plan regularly (for example, in conjunction with significant changes, deviations

from the software plan, milestone events) and update as needed and as appropriate.
• Maintain necessary project records.

STEP 5 CLOSE OUT THE PROJECT. (Section 7.2)

• Complete the software project history.
• Submit project close-out data.
• Communicate lessons learned to other parts of the organization.

Figure 3–1. The Five-Step Project Process

17 NASA-GB-001-96

3.2 Documenting the Project’s Process—The Software Plan
Activity Requirements

üü
Planning the Software Project

Objective. Develop a comprehensive plan, based on best practices proven on NASA projects,
that will guide the software team through the entire software engineering effort.

Key elements, roles, and responsibilities. The software manager develops and records the
software plan for conducting the activities required by this guidebook and by other software-
related requirements. Three sets of significant activities (the first three steps of the five-step
project process) need to be performed to plan a software project (shaded area on Figure 3–2):

1. Understand the scope of the work (Chapter 4)

2. Define the optimal technical approach (Chapter 5)

3. Define the corresponding management approach (Chapter 6)

(The next three sections of the guidebook provide details on each of these three important sets
of activities.)

The independent SQA representative prepares the software quality assurance portion of the
software plan and the project’s software configuration manager prepares the software
configuration management portion of the software plan. This planning is consistent with
system-level planning. Software plans are reviewed and approved in accordance with
organization-defined procedures, as are significant changes to previously approved plans.

The development and recording of planning and engineering information are intrinsic parts of
the software process and are to be performed regardless of whether the information is required
as part of the deliverables. The organization’s software plan documentation standard serves as
a checklist of items to be covered in the planning or engineering activity. To enhance the
usability of the information, portions of the plan may be bound or maintained separately.
Examples include separate documents for SQA and SCM plans.

Primary products. The primary product from this activity is as follows:

• Project software plan

NASA-GB-001-96 18

 D
evelo

p
 in

itial p
ro

ject so
ftw

are p
lan

Monitor and control software project
(maintain project software plan

and records as necessary)

Independently assure software products and activities (SQA)

Manage configuration (SCM)

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

Time

Validate and verify (V&V) software products

Participate in milestone reviews
D

eliver final
softw

are products

C
lose out softw

are project

Prepare software team

Figure 3–2. Planning the Software Project

Every software project has its own software process. The project’s software plan documents the
process and provides a disciplined approach to organizing and managing a software project. The
existence of a plan does not guarantee project success; the key to successful software
management is generating and maintaining a realistic, usable plan and then following it.
Following the plan involves not only maintaining the plan itself, but also performing activities to
measure progress and performance against the plan. Use the plan to assist in recognizing danger
signals, and take early and appropriate actions to solve problems.

This guidebook does not mandate a specific format for a software plan; however, every PAL
should include good examples of software management plans and a reusable template for such a
plan. An excellent example of such a template is the Reusable Software Management Plan
developed by the Software Assurance Technology Center at the Goddard Space Flight Center
(GSFC) (Reference 6). It includes an on-line help tool for tailoring the text to an individual
software project. Another excellent example is provided in the NASA Software Engineering
Laboratory’s Manager’s Handbook for Software Development (Reference 7). Depending on the
specific development environment, items may be arranged differently or new material may be
added. In nearly all cases, a project’s software plan will be contained in more than one physical
document, because many of the plan’s components will be common to multiple projects (for
example, a QA or CM plan). However, the project’s software plan must contain references to all
required topics that are packaged separately.

By completing the initial plan early in the life cycle, the manager becomes familiar with the
essential aspects of the specific software engineering effort:

• Scope and requirements of the project

• Overall schedule and milestones

• Staff requirements

19 NASA-GB-001-96

Each manager defines the project’s technical approach, driven by the customer’s requirements,
constraints, goals, and objectives; management’s risk tolerance level; and the target and
development or maintenance environments. The technical approach is described in the software
plan and should concentrate on information unique to, or tailored for, a specific project. Simply
reference applicable documents that contain standard policies, guidelines, standards, and
procedures to be applied; do not restate that information in detail. Begin to write the plan as soon
as information about the project’s definition and scope is available. The plan should be available
within the first 30 to 60 days of the project, except for information that will not be available until
later in the life cycle (indicate who will supply any missing information and when it will be
provided). Distribute copies of the plan to all levels of project management, to the client, and to
the software team.

The following additional points are included here for completeness and to ensure common
understanding. While developing the plan and running the project

• Incorporate lessons learned from other similar or related software projects. Read
software project history reports from those projects.

• Use sound judgment. One significant lesson learned from performing software
engineering on NASA projects is that no single life-cycle model, analysis and design
method, testing method, degree of formality of documents and reviews, etc. is
appropriate for every NASA software project. Use of sound, professional judgment is
expected with respect to decisions related to such topics.

• You can always do more. This guidebook defines the minimum required software
activities and products, not the precise set of things to do. If a manager or project
team feels that something additional would be useful, they are empowered to do so.

• Remember that you are not alone in this planning effort; you are not the first nor will
you be the last to plan a new or different software project. Consult with other software
managers for their opinions, advice, and ideas.

Figure 3–3 illustrates the inputs to the process of preparing a tailored software plan:

• The customer’s requirements and constraints as well as his or her goals and objectives

• The risk tolerance levels of the project manager and of the project’s organizational
management

• Reusable process assets from local and higher level PALs

• The NASA Software Management Guidebook (this document)

• The NASA Software Measurement Guidebook (Reference 5)

• The NASA Software Process Improvement Guidebook (Reference 2)

NASA-GB-001-96 20

NASA SOFTWARE
MEASUREMENT

GUIDEBOOK

PROCESS
STUDY

HIGHER
LEVEL

SOFTWARE PAL

NASA SOFTWARE
MANAGEMENT

GUIDEBOOK

PROJECT'S
SOFTWARE PLAN
WITH A TAILORED

PROCESS

LOCAL
SOFTWARE

PAL

CUSTOMER'S
REQUIREMENTS
& CONSTRAINTS,

GOALS &
OBJECTIVES

MANAGEMENT'S
RISK

TOLERANCE
LEVEL

NASA SOFTWARE
PROCESS

IMPROVEMENT
GUIDEBOOK

Figure 3–3. Tailoring the Project’s Software Process

Software Measurement Guidebook presents information on the purpose and importance
of measurement for

1. Understanding and modeling the software engineering process

2. Aiding in the management of software projects

3. Guiding improvement in software engineering processes

It discusses the specific procedures and activities of an organizational measurement program and
the roles of the people involved. The guidebook also clarifies the role that measurement can and
must play in the goal of continual, sustained improvement for all software production and
maintenance efforts.

The Software Process Improvement Guidebook is a companion document that describes how a
software project uses a new technology (that is, one that has not yet been proven anywhere within
the organization) in a controlled fashion and quantitatively assesses the effect of the technology
on the products generated and the process used.

21 NASA-GB-001-96

4. Beginning to Plan the Project: Understanding the
Scope of Work

his chapter describes activities that are required to begin planning the project. Software
project planning need not wait, indeed must not wait, for receipt of the final software
requirements to begin the project planning process. It should begin as soon as project

personnel become aware of the intent of the customer to initiate a new software effort, and it
should be coordinated, as much as possible, with other NASA groups responsible for related
requirements.

Activity Requirements

üü
Understanding the Scope of Work

Objective. Record the project’s understanding of the scope of the work to be performed. This
activity forms the basis for the technical and management approaches.

Key elements, roles, and responsibilities. The software manager records, in the software
plan, his or her understanding of the following:

• The customer’s requirements, constraints, and contributions

• The customer’s goals and objectives

• Management’s risk tolerance level

• Products to be delivered to the customer and their characteristics

Primary products. The primary product from this activity is as follows:

• Required portions of the project’s software plan

The rest of this chapter provides guidance in accomplishing this required activity.

4.1 Ascertaining Customer Requirements and Constraints

Ascertain the customer’s requirements and constraints from the software requirements
specifications, discussions with the customer, and any other appropriate means. The customer
may have only a general idea of the software requirements; determination of detailed
requirements may follow later or may even be part of the project. (The same applies to
characteristics of products to be delivered.)

NASA experience has been that the more the end user of the software product is involved
throughout the product’s engineering life cycle, the more likely the expected product will result.
The customer, however, is not always the end user of the software product. When this is the case,
work with the customer to encourage that the end user be as involved throughout as much of the
product’s life cycle as possible. This involvement is particularly crucial during the requirements
analysis and design activities early in the life cycle. It is also important to try to get end-user
involvement at milestone reviews.

T

NASA-GB-001-96 22

!!
TIPS

l Try to help the customer prepare the software requirements
by reviewing drafts. In this way, the software manager can
provide insight, suggest alternatives, point out implications
of particular wording, etc., before the requirements
statement is finalized.

l When detailed requirements are not well-defined or well-
understood, consider using the joint application
development (JAD) workshop technique, as described in
Section 5.2.1, to help the customer refine the requirements.

l In some organizations, the project software staff defines the
requirements as an early part of the project. In those cases,
involve the customer as a co-author, or at least as a
reviewer, before the requirements statement is finalized.

4.2 Ascertaining Customer Goals and Objectives

During meetings with the customer, ascertain the customer’s organizational goals and specific
project objectives regarding overall cost, schedule, and product qualities. Also understand the
goals of higher levels of the organization. The software manager and customer use the goals to
determine and agree on the appropriate robustness desired of product, formality and level of
detail and polish in documents, milestone review presentations, and so on. The software manager
defines, in the project’s software plan, the specific approach that best addresses the application
domain, the objectives established for the project, and the size of the effort. Table 4–1 provides
examples of the types of objectives that might be established for a project.

Table 4–1. Sample Project Objectives

Objective Examples

Cost • Minimize cost to develop
• Minimize cost to maintain

Schedule • Deliver by fixed date (for example, 90 days before
launch)

Product
Qualities

• Maximize reusability
• Maximize robustness
• Maximize freedom from defects
• Maximize performance (for example, response

time)
• Maximize maintainability or extensibility

23 NASA-GB-001-96

4.3 Understanding Management’s Risk Tolerance

To minimize costs or cycle time, it is sometimes necessary to introduce risk. Understand what
level of risk tolerance is acceptable to the management of both the development or maintenance
organization and the customer’s organization, and include a risk management approach in the
software plan that accommodates that level of risk. (See Section 6.3.)

An approach for continuous risk management is explained in detail in the Software Engineering
Institute’s (SEI’s) technical report Continuous Risk Management Guidebook (Reference 8),
recently adopted by the NASA Software Program for use throughout the Agency.

4.4 Understanding Products to be Delivered and Their Characteristics

Reach agreement with the customer regarding the products to be delivered and the goals for each
product with respect to its cost, schedule, and qualities. Remember that initially the customer
may have only a general idea of the product requirements; determination of specific products
may follow later or may even be part of the project.

4.4.1 Documentation

The amount of time and effort expended in producing a document can vary considerably. (Refer
to the glossary for the definition of documentation.) Factors that affect document production
include the following:

• Audience for the document—points of view and levels of experience of the readers

• General format

• Level of detail

• Degree of formality

For deliverable documents, the following additional factors apply:

• Paper vs. electronic delivery (if paper, the number of copies per delivery)

• Number of interim deliverable versions

!!
TIPS

l To retain control, avoid using the staff of a technical
publications department on early drafts of documents and on
documents that will not be delivered to the customer.

l Give outlines or early drafts to the customer for review.

4.4.2 Software Product Releases

Use interim software releases (as opposed to the “big bang” approach) either to satisfy early
operational needs of the customer or as a risk mitigation technique (for example, to ensure the
feasibility of high-risk requirements). Integrating and testing the system in parts helps to localize

NASA-GB-001-96 24

erros and reduce debugging time. Early releases also help to build the customer’s confidence
level, as well as that of management, that the project is on track.

4.4.3 Milestone Reviews

Milestone reviews and associated review material should also be treated as deliverable products.
That is, discuss their goals with the customer in terms of responsibilities, cost, schedule, and
qualities. Many of the factors that affect producing documentation-oriented products also apply
to milestone reviews. (See Section 5.2.9 for details.)

25 NASA-GB-001-96

5. Defining the Technical Approach

hapter 4 described the first step in the planning process: understanding the scope of the
work to be performed. The next step is to define a technical approach that best
accomplishes the work, which is the subject of this chapter. It includes selecting an

appropriate life-cycle model along with corresponding activities, methods, and products.

Activity Requirements

üü
Defining the Technical Approach

Objective. Document the technical approach that the software team will use to accomplish the
software work identified in Chapter 4.

Key elements, roles, and responsibilities. The software manager defines the project’s
technical approach by selecting an appropriate life-cycle model and methods for performing
required activities, and appropriate packaging techniques for required products. To facilitate
developing each project’s technical approach and to avoid reinventing the wheel, this
guidebook contains a summary of effective, proven,2 recommended life-cycle models and
methods from which the software manager can choose to satisfy the required common
activities.

If, however, the manager believes that a different, unproven method would be more
appropriate, then he or she is encouraged to try it out in a controlled fashion by planning a
process study (see Section 2.2.3). Such a study allows the manager to capture data about the
use of the alternative approach and to measure its overall effect on the software product and
process.

If the software manager feels that additional activities or products would be useful, he or she is
expected to apply sound, professional judgment in decisions related to such topics.

Each project’s tailored process (see) is defined in its project-specific software plan.

Primary products. The primary product from this activity is as follows:

• Technical approach portions of the project’s software plan

Although the following descriptions of process requirements and tailoring guidelines are
extensive, a new project manager should not feel overly intimidated by the length of this chapter.
If your new project is similar to one that another project manager has managed previously, then
visit your PAL or seek out that manager and reuse the appropriate tailoring from the earlier
project. Complete the applicable additional process tailoring and you will be ready to estimate
and plan your project based on the specifics of your process. After you have defined the technical
approach for your project, everything you need to know to complete the management approach
and then run the project is provided in the following two chapters, which are much shorter.

2 “Proven” means used successfully within NASA.

C

NASA-GB-001-96 26

5.1 Selecting an Appropriate Life-Cycle Model

This section identifies the life-cycle models recommended for use on NASA software projects. A
life-cycle model comprises one or more phases (for example, a requirements definition phase, a
design phase, a test phase). Each phase is defined as the time interval between two scheduled
events. For example, in the waterfall life-cycle model, the design phase is defined as the period
between the software specification review and the critical design review (CDR).

Within each phase, one or more activities are executed. For example, during the waterfall
model’s design phase, the design activity is performed; the test planning activity for qualification
testing may be done at the same time. In most cases, activities neither begin nor end precisely at
the phase boundaries; rather, they overlap adjacent phases, as illustrated in Figure 5–1.

E
F

F
O

R
T

TIME

Requirements Design Implementation

Qual & Sys Testing Acceptance Testing Other

IMPLEM & QUAL TEST SYS
TEST

ACCEPT.
TEST

RQTS DESIGN

SSR CDR QTRR ATRR ORR

Activities:

Phases:

Figure 5–1. Phases and Activities

Various methods (or techniques) may be used in the performance of an activity. For example,
object-oriented design is one proven design method; structured design is another.

This document does not mandate any particular software life-cycle model, and the order of
activities described here is not intended to conform to any particular model. Few specific
methods are mandated for required activities. These decisions are left to the software manager,
who selects an appropriate life-cycle model and activity-related methods and defines them in the

27 NASA-GB-001-96

project’s software plan. This chapter contains guidance on selecting an appropriate,
recommended life-cycle model and methods for many activities.

For convenience, Table 5–1 provides the definitions (see the Glossary) of several important terms
used extensively in this section.

Table 5–1. Defining a Life Cycle

Term Definition

Software life cycle “The period of time that begins when a software product is conceived and ends
when the software is no longer available for use” (Reference 9). A life cycle is
typically divided into life-cycle phases.

Life-cycle model A framework on which to map activities, methods, standards, procedures, tools,
products, and services (for example, waterfall, spiral).

Life-cycle phase A division of the software effort into non-overlapping time periods. Life-cycle
phases are important reference points for the software manager. Multiple
activities may be performed in a life-cycle phase; an activity may span multiple
phases.

Activity A unit of work that has well-defined entry and exit criteria. Activities can usually
be broken into discrete steps.

Method A technique or approach, possibly supported by procedures and standards, that
establishes a way of performing activities and arriving at a desired result.

" Five life-cycle models are summarized in the following subsections. These models
are recommended on the basis of NASA’s experience applying them successfully at
various centers. Development is addressed before maintenance, and the
development life-cycle models are ordered from the simplest and most familiar to
what may be the most complex and least familiar.

• Waterfall development life-cycle model

• Incremental development life-cycle model

• Evolutionary development life-cycle model

• Package-based development life-cycle model

• Legacy system maintenance life-cycle model

NASA-GB-001-96 28

5.1.1 Waterfall Development Life-Cycle Model

Table 5–2 summarizes the life cycle defined by the waterfall development model.

Table 5–2. Summary of Waterfall Development Life-Cycle Model

Summary description
and discussion

The waterfall (single-build) life-cycle model is essentially a once-
through-do-each-step-once approach. Simplistically, determine user
needs, define requirements, design the system, implement the
system, test, fix, and deliver the system (Reference 10).

This model is illustrated in Figure 5–2. Major products and milestone
reviews for this life-cycle model are summarized in Table 5–3.

Advantages • Well-studied, well-understood, and well-defined
• Easy to model and understand
• Easy to plan and monitor
• Many management tools exist to support this life-cycle model

Disadvantages • Most if not all requirements must be known up front
• Does not readily accommodate requirements changes
• Product is not available for initial use until the project is nearly

done
Most appropriate

when ...
• Project is similar to one done successfully before
• Requirements are quite stable and well-understood
• The design and technology are proven and mature
• Total project duration is relatively short (less than a year)
• Customer does not need any interim releases

29 NASA-GB-001-96

Requirements analysis

Architectural design

Detailed design

Implementation & testing

Qualification testing

Delivery

Figure 5–2. Waterfall Development Life-Cycle Model

Table 5–3. Products and Milestone Reviews for the Waterfall Development Life-Cycle Model

Life-cycle phase Major products Milestone reviews

Project planning • Software plan None

Requirements definition
and analysis

• Software requirements
specification (SWRS)

Software Specification Review (SSR)

Architectural design • Software design specification
(SWDS), preliminary

• Qualification test plan
• Preliminary user’s guide

Preliminary Design Review (PDR)

Detailed design • Software design specification
(SWDS), detailed

Critical Design Review (CDR)

Implementation and
testing

• Unit-level design
• Implemented, tested software
• Qualification test procedures
• Draft user’s guide

Qualification Test Readiness Review
(QTRR)

Qualification testing • Qualification-tested software
• Qualification test report
• Final user’s guide
• As-built software description

Acceptance Test Readiness Review
(ATRR)

NASA-GB-001-96 30

5.1.2 Incremental Development Life-Cycle Model

Table 5–4 summarizes the life cycle defined by the incremental development model.

Table 5–4. Summary of Incremental Development Life-Cycle Model

Summary description
and discussion

The incremental (multi-build) life-cycle model determines user needs
and defines a subset of the system requirements, then performs the
rest of the development in a sequence of builds. The first build
incorporates part of the planned capabilities, the next build adds
more capabilities, and so on, until the system is complete (Reference
10).

This model is illustrated in Figure 5–3. Major products and milestone
reviews for this life-cycle model are summarized in Table 5–5.

Advantages • Reduces risks of schedule slips, requirements changes, and
acceptance problems

• Increases manageability
• Interim builds of the product facilitate feeding back changes in

subsequent builds
• Interim builds may be delivered before the final version is done;

this allows end users to identify needed changes
• Breaks up development for long lead time projects
• Allows users to validate the product as it is developed
• Allows software team to defer development of less well

understood requirements to later releases after issues have been
resolved

• Allows for early operational training on interim versions of the
product

• Allows for validation of operational procedures early
• Includes well-defined checkpoints with customer and users via

reviews
Disadvantages • Like the waterfall life-cycle model, most if not all requirements

must be known up front
• Sensitive to how specific builds are selected
• Places products (particularly requirements) under configuration

control early in the life cycle, thereby requiring formal change
control procedures that may increase overhead, particularly if
requirements are unstable

Most appropriate
when ...

• Project is similar to one done successfully before
• Most of the requirements are stable and well-understood; but

some TBDs may exist
• The design and technology are proven and mature
• Total project duration is greater than one year or customer needs

interim release(s)

31 NASA-GB-001-96

Define or Derive
Software CI

Requirements

Design Software CI

Release 1

Implement and Test Software CI
Qualification

Test

Requirements
Analysis and

Design

Release 2

Implement and
Test Software CI

Qualifica-
tion Test

Requirements
Analysis and

Design

Final Release

Implement and
Test Software CI

Qualifica-
tion Test

Figure 5–3. Incremental Development Life-Cycle Model

Table 5–5. Products and Milestone Reviews for the Incremental Development Life-Cycle Model

Life-cycle phase Major products Milestone reviews

Project planning • Software plan None

Requirements definition
and analysis

• Software requirements
specification (SWRS)

Software Specification Review (SSR)

Architectural design • Software design specification
(SWDS), preliminary

• Qualification test plan
• Preliminary user’s guide

Preliminary Design Review (PDR)

Detailed design • Software design specification
(SWDS), detailed through at least
the first build

Critical Design Review (CDR)

• Software design specification
(SWDS), detailed through at least
the next build

Build Design Review (BDR)

Implementation and
testing

• Unit-level design
• Implemented, tested software
• Qualification test procedures
• Draft user’s guide

Qualification Test Readiness Review
(QTRR)

Qualification testing • Qualification-tested software
• Qualification test report
• Final user’s guide
• As-built software description

Acceptance Test Readiness Review
(ATRR)

NASA-GB-001-96 32

5.1.3 Evolutionary Development Life-Cycle Model

Table 5–6 summarizes the life cycle defined by the evolutionary development model.

Table 5–6. Summary of Evolutionary Development Life-Cycle Model

Summary description
and discussion

Like the incremental development model, the evolutionary life-cycle model
also develops a system in builds, but differs from the incremental model in
acknowledging that the user needs are not fully understood and not all
requirements can be defined up front. In the evolutionary approach, user
needs and system requirements are partially defined up front, then are
refined in each succeeding build. The system evolves as the
understanding of user needs and the resolution of issues occurs.
Prototyping is especially useful in this life-cycle model. (The evolutionary
development life-cycle model is sometimes referred to as a spiral
development model, but it is not the same as Boehm’s spiral model
(Reference 11). This model is also sometimes referred to as a prototyping
life-cycle model, but it should not be confused with the prototyping
technique defined in Section 5.2.1.)

This life-cycle model is illustrated in Figure 5–4. Major products and
milestone reviews for this model are summarized in Table 5–7.

Advantages • Not all requirements need be known up front
• Addressing high risk issues (for example, new technologies or unclear

requirements) early may reduce risk
• Like the incremental life-cycle model, interim builds of the product

facilitate feeding back changes in subsequent builds
• Users are actively involved in definition and evaluation of the system
• Prototyping techniques enable developers to demonstrate functionality

to users with minimal of effort
• Even if time or money runs out, some amount of operational capability

is available
Disadvantages • Because not all requirements are well-understood up front, the total

effort involved in the project is difficult to estimate early. Therefore,
expect accurate estimates only for the next cycle, not for the entire
development effort.

• Less experience on how to manage (progress is difficult to measure)
• Risk of never-ending evolution (for example, continual “gold plating”)
• May be difficult to manage when cost ceilings or fixed delivery dates

are specified
• Will not be successful without user involvement

Most appropriate
when ...

• Requirements or design are not well-defined, not well-understood, or
likely to undergo significant changes

• New or unproved technologies are being introduced
• System capabilities can be demonstrated for evaluation by users
• There are diverse user groups with potentially conflicting needs

33 NASA-GB-001-96

Sys.
Concept

Def.

System
Operations and
Maintenance

System
Operations and
Maintenance

System
Operations and

Maintenance

System
Implementation

System Installation
and Acceptance

System
Reqmts. and
Arch. Def.

System Requirements
and Architecture

Definition

System
Implementation

System Integration
and Test

System Integration
and Test

System Integration
and Test

System Installation
and Acceptance

System Installation
and Acceptance

System Installation
and Acceptance

Release 1 Release 4Release 3Release 2

System Requirements
and Architecture

Definition

System Requirements
and Architecture

Definition

System
Operations and
Maintenance

System Integration
and Test

System
Implementation

System
Implementation

Figure 5–4. Evolutionary Development Life-Cycle Model

Table 5–7. Products and Milestone Reviews for the Evolutionary Development Life-Cycle Model

Life-cycle phase Major products Milestone reviews

Concept definition • Initial System Development Plan to be
updated in later phases

System Concept Review (SCR)

Requirements and
architecture
definition

• Preliminary requirements document
• Architectural design document containing

the infrastructure plus the architecture of
each release as it evolves

• Requirements traceability map

Combined System Requirements
Review (SRR) and System
Design Review (SDR)

Implementation • Evolutionary Implementation Plan
• Timebox plan for each timebox (see Table

6–3)
• Software product baseline combining new,

reused, and off-the-shelf products
• Updated requirements traceability map
• Draft user documentation

Timebox assessments
Qualification testing after all

timeboxes for the release have
been completed

Integration and test • System test procedures
• Integrated, tested software
• Qualification test report
• Final user documentation

Acceptance Test Readiness
Review (ATRR)

Installation and
acceptance

(Although these system life-cycle phases are shown in Figure 5–4 for completeness, they are not discussed here, or in
the corresponding tables for the other life-cycle models, because they are out of the scope of the software life cycle.)

Operations and
maintenance

NASA-GB-001-96 34

5.1.4 Package-Based Development Life-Cycle Model

Table 5–8 summarizes the life cycle defined by the package-based development model.

Table 5–8. Summary of Package-Based Development Life-Cycle Model

Summary description
and discussion

The package-based development life-cycle model is used for system
development based largely on the use of commercial-off-the-shelf
and Government off-the-shelf products and reusable packages
(Reference 12). Typically, some custom software development is
needed to provide interfaces among the NDIs.

This model is illustrated in Figure 5–5. Major products and milestone
reviews for this life-cycle model are summarized in Table 5–9.

Advantages • Lower cost than developing equivalent functionality from scratch
• Cycle time also often lower than developing equivalent

functionality from scratch
• Improves confidence in quality of the end product (since quality of

NDIs is already known)
Disadvantages • May result in compromises between desired functionality and

functionality provided by NDIs
• Maintainability may be more of a challenge because source of

NDIs may not be the same NASA organization (for example,
requires third party to make changes, raises SCM issues when
NDI vendor releases updated versions)

Most appropriate
when ...

• A significant portion of the functionality of a system can be
provided by NDIs

35 NASA-GB-001-96

Requirements
Analysis and

Package
Identification

Prototyping

System
Delivery

Technology
Update and

System
Maintenance

System
Integration
and Test

Refined requirements,
High-level architecture

Customer's requirements

Technology breakthroughs,
New requirements,
New products

Selected
packagesRequirements

Architectural
Definition and

Package
Selection

Figure 5–5. Package-Based Development Life-Cycle Model

Table 5–9. Major Products and Milestone Reviews for the Package-Based Development Life-Cycle
Model

Life-cycle phase Major products Milestone reviews

Requirements Analysis
and Package
Identification

• System Development Plan
• Requirements
• Strawman high-level architecture
• Candidate packages

System Requirements Review (SRR)

Architectural Definition
and Package
Selection

• Modified requirements
• System architecture
• Final packages

System Design Review (SDR)

System Integration and
Test

• Delivered system User demonstrations
Operational Readiness Review (ORR)

Technology Update and
System Maintenance

• Enhanced system User demonstrations

NASA-GB-001-96 36

5.1.5 Legacy System Maintenance Life-Cycle Model

Table 5–10 summarizes the life cycle defined by the legacy system maintenance model.

Table 5–10. Summary of Legacy System Maintenance Life-Cycle Model

Summary description
and discussion

The legacy system maintenance release life-cycle model is used to
apply fixes or minor enhancements to an operational system. (Use a
waterfall or incremental life-cycle model for major enhancements.)
Selected and sometimes abbreviated activities performed in the
software development life cycles are also performed during
maintenance. The legacy system maintenance life-cycle model is
similar in nature to the waterfall life-cycle model; the primary
difference is that the architectural design has already been
established (Reference 10).

This model is illustrated in Figure 5–6. Major products and milestone
reviews for this life-cycle model are summarized in Table 5–11.

Most appropriate
when ...

Maintenance release comprises only fixes and minor enhancements.

Requirements analysis

Detailed design

Implementation & testing

Qualification testing

Delivery

Figure 5–6. Legacy System Maintenance Life-Cycle Model

37 NASA-GB-001-96

Table 5–11. Products and Milestone Reviews for the Legacy System Maintenance Life-Cycle Model

Life-cycle phase Major products Milestone reviews

Release planning • Release contents agreement Release Contents Review (RCR)

Requirements definition
and analysis

• Release requirements specification Release Requirements Review (RRR)

Design • Release design specification Release Design Review (RDR)

Implementation and
testing

• Unit-level design
• Implemented, tested software
• Qualification test plan and

procedures
• Draft user’s guide updates

Release Qualification Test Readiness
Review (RQTRR)

Qualification testing • Qualification-tested software
• Qualification test report
• Final user’s guide updates
• As-built software description

updates

Acceptance Test Readiness Review
(ATRR)

NASA-GB-001-96 38

5.2 Selecting Appropriate Activities, Methods, and Products

After an appropriate life-cycle model has been selected, it must be populated with software
engineering activities, methods, techniques, and products that will help achieve the goals and
objectives established for the project. The following subsections present implementation
guidance for each required activity (see Table 2–1) and identify recommended methods for
performing those activities.

Two logical groups of activities are described in this section:

1. Activities that are performed to produce a specific software product (shaded in Figure
5–7, Primary Software Engineering Activities)

– Software CI requirements definition and analysis (Section 5.2.1)

– Software CI design (Section 5.2.2)

– Software CI implementation and testing (Section 5.2.3)

– Software CI qualification testing (Section 5.2.4)

– Preparation for software delivery (Section 5.2.5)

2. Activities that are performed in support of each of the first group of activities (shaded
in Figure 5–8, Software Engineering Support Activities and described beginning in
Section 5.2.6)

– Software product validation and verification (Section 5.2.6)

– Software configuration management (Section 5.2.7)

– Software quality assurance (Section 5.2.8)

– Milestone reviews (Section 5.2.9)

39 NASA-GB-001-96

 D
evelop initial project softw

are plan

Monitor and control software project
(maintain project software plan

and records as necessary)

Independently assure software products and activities (SQA)

Manage configuration (SCM)

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

Time

Validate and verify (V&V) software products

Participate in milestone reviews
D

eliver fin
al

so
ftw

are p
ro

d
u

cts

C
lose out softw

are project

Prepare software team

Figure 5–7. Primary Software Engineering Activities

 D
evelop initial project softw

are plan

Monitor and control software project
(maintain project software plan

and records as necessary)

Independently assure software products and activities (SQA)

Manage configuration (SCM)

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

Time

Validate and verify (V&V) software products

Participate in milestone reviews

D
eliver final

softw
are products

C
lose out softw

are project

Prepare software team

Figure 5–8. Software Engineering Support Activities

NASA-GB-001-96 40

5.2.1 Software CI Requirements Definition and Analysis

Activity Requirements

üü
Software CI Requirement Definition and Analysis

Objective. Software requirements form the foundation for all subsequent design and
implementation activities. They also form the basis for the customer’s acceptance criteria. The
quality of the software requirements directly affects the success of the project; therefore, the
objective of this activity is to ensure that high-quality software requirements specifications are
made available to the software designers, implementers, and testers.

Key elements, roles, and responsibilities.

• When no requirements are provided to the software team, software requirements analysts
(sometimes referred to as system engineers) elicit them from the customer, end users, and
others as appropriate.

• When higher level requirements are provided (for example, system-level requirements), the
analysts examine the requirements for completeness, consistency, and understandability,
then derive the software requirements from them.

• When detailed requirements for the software are provided, the analysts examine those
requirements for completeness, consistency, and understandability.

• The software requirements analysts record the software requirements to be met by each
software CI, the methods to be used to ensure that each requirement has been met, and the
traceability between the software CI requirements and higher level requirements (if any).
The result includes all applicable items in the software CI requirements specification
(SWRS) documentation standard.

• Conduct the following support activities in conjunction with this activity:
– Validate and verify products of this activity, intermediate and final, in accordance with

Section 5.2.6
– Finalize the products of this activity by holding milestone reviews in accordance with

Section 5.2.9
– Control products of this activity in accordance with Section 5.2.7

Primary products. The primary products from this activity are as follows:

• Software CI requirements specification

• Product V&V records for requirements definition and analysis products

• Milestone review of software requirements

" Recommended methods

• Structured requirements analysis (Table 5–12)

• Object-oriented requirements analysis (Table 5–13)

41 NASA-GB-001-96

Table 5–12. Structured Requirements Analysis Method

Summary Description
and Discussion

Structured requirements analysis is a method of analyzing and specifying the
requirements of a product from a functional point of view. Structured analysis
includes the use of data flow diagrams, data dictionaries, structured English,
decision tables, and decision trees to develop a structured requirements
specification.

Advantages Familiar to most software requirements analysts

Disadvantages It is sometimes difficult to transform data flow diagrams from this activity into
structure charts in the Software CI Design activity

Most appropriate
when ...

• Structured techniques will be used throughout the effort
• The problem to be solved is well-understood

Key products Software requirements specification (SWRS), including the following:

• Classification of requirements by clarity level (fully defined, needs
clarification, or ambiguous) and by category (functional, performance,
operations, or programmatic)

• Data flow diagrams (DFDs)
• Function specifications
• Data dictionaries
• Identification and definition of external interfaces
• Traceability matrices (maps software requirements to higher level system

requirements, if applicable)

NASA-GB-001-96 42

Table 5–13. Object-Oriented Requirements Analysis Method

Summary Description
and Discussion

Object-oriented requirements analysis is a method of analyzing and specifying
the requirements of a product in terms of the objects that the system is
modeling and operations that pertain to those objects.

Advantages • There is empirical evidence within NASA that use of object-oriented
technology facilitates reuse

• Felt by some NASA practitioners to be a more natural, intuitive approach
than traditional structured approaches, resulting in products that are more
maintainable and modifiable

Disadvantages • Can be difficult for personnel with a structured analysis background
• Unless a recognized object-oriented method is chosen (for example,

Booch, OMT), computer-aided software engineering (CASE) tool support
is limited or nonexistent

Most appropriate
when ...

• Object-oriented techniques will be used throughout the effort
• Reusability, maintainability, or modifiability of the products developed is an

important objective

(The consensus of NASA personnel who have applied object-oriented
methods is that object-oriented technology is applicable in most situations.)

Key products Software requirements specification (SWRS), including the following:

• Classification of requirements by clarity level (fully defined, needs
clarification, or ambiguous) and by category (functional, performance,
operations, or programmatic)

• Entity relationship diagrams, data flow diagrams, and state transition
diagrams

• Identification and definition of external interfaces
• Traceability matrices (maps software requirements to higher level system

requirements, if any)

" Recommended techniques

• Prototyping (Table 5–14)

• Joint application development (JAD) workshops (Table 5–15)

43 NASA-GB-001-96

Table 5–14. Prototyping Technique

Summary Description
and Discussion

A prototype is an early experimental model of a system, system component,
or system function that contains enough capabilities for it to be used to
establish or refine requirements, or to validate critical design concepts. A
prototype is not an early operational version of a system. It does not contain
all required system support functions; is not meant to be as reliable or robust
as an operational system; and is seldom constrained by stringent
performance, safety, security, or operational requirements.

Advantages • Prototyping is useful to clarify unclear requirements, to obtain buy-in on
user interface characteristics, to gain experience when a new technology is
being applied, or to evaluate alternative designs when major performance
or reliability issues are unresolved.

• Users get to see early versions of product functionality and provide
feedback without a lot of time and effort on the part of the developers and
testers.

Disadvantages • Prototyping is sometimes inappropriately used in an attempt to avoid
performing proven software engineering activities like peer reviews,
testing, configuration management, and documentation.

• Users may interpret a prototype to be a finished product and not recognize
(or accept) that additional work is required to develop an operational
product.

• Prototypes, even when used appropriately, have a tendency to become
operational products.

Most appropriate
when ...

• Requirements are unclear, when the user interface is crucial, when a new
technology is being applied, or when major performance or reliability
issues are unresolved.

Key products • Prototype development plan
• A prototype of the product to be developed
• Prototype summary report

NASA-GB-001-96 44

Table 5–15. JAD Workshop Technique

Summary Description
and Discussion

JAD is a facilitated workshop technique designed to bring together principal
stakeholders to solve a well-defined problem (for example, producing a product of
one of the recommended requirements analysis methods) in order to produce a
well-defined product or set of products (for example, a traceability matrix).

Advantages • Includes people with authority to make decisions
• Increases visibility into needs of customer and users, and concerns of

developers
• Facilitates discussing alternatives, and advantages and disadvantages of each
• Reduces risk that decisions made by workshop participants will be changed

later, thus reducing costs and cycle time due to less rework
• Relies on effective group dynamics, resulting in increased synergism among

stakeholders
Disadvantages Impossible if principal stakeholders are not available, not given the authority, or not

backed by their management

Most appropriate
when ...

• Cycle time must be shortened
• There are a number of interfacing organizations that are all stakeholders
• Participants with knowledge and authority are available (or will be made

available)
• There is adequate time for preparation, execution, and follow up
• An experienced facilitator and appropriate facilities are available

Key products • Workshop notes
• Action item lists
• Intended end products of JAD workshop (requirements specifications in this

case)
• Post-JAD management briefing

!!
TIPS

l When the system is essentially all software, consider
creating the equivalent of a System & Operations Concept
document (including a discussion of operational scenarios)
as an introduction to the software requirements
specification.

l Record and track to closure requirements questions and
TBD requirements.

l Include software qualification testers in the process of
analyzing software requirements; they can review the
requirements from a testability point of view.

l NASA has had considerable success using team inspections
(see Table 5–22 and Reference 13) for V&V of
requirements products.

45 NASA-GB-001-96

5.2.2 Software CI Design

Activity Requirements

üü
Software CI Design

Objective. The objective of the software CI design activity is to translate the software CI
requirements into a form that can be implemented in software.

Key elements, roles, and responsibilities. This activity produces two basic levels of design:
architectural or high-level design, and detailed design.

• Prepare the architectural design.
– Software design architects define and record design decisions; that is, decisions about the

software CI’s behavioral design and other decisions that affect the selection and design
of the software components included in the software CI. The result includes all
applicable items in the software CI design section of the software CI design specification
(SWDS) documentation standard.

– Software design architects define and record the architectural design of each software CI
(the software components included in the software CI, their interfaces, and a concept of
execution among them) and the traceability between the software components and the
software CI requirements. The result includes all applicable items in the architectural
design and traceability sections of the SWDS documentation standard.
Software components may consist of other software components and may be organized
into as many levels as are needed to represent the software CI architecture. For example,
a software CI may be divided into three software components, each of which is divided
into additional software components, and so on.

• Prepare the detailed design. Software detail designers develop and record a description of
each lowest level software component, referred to as a unit-level component, or simply unit.
The result includes all applicable items in the detailed design section of the SWDS
documentation standard.

• Conduct the following support activities in conjunction with this activity:
– Validate and verify products of this activity, intermediate and final, in accordance with

Software Product Validation and Verification, Section 5.2.6.
– Finalize the products of this activity by holding milestone reviews in accordance with

Milestone Reviews, Section 5.2.9.
– Control products of this activity in accordance with Software Configuration

Management, Section 5.2.7.

Primary products. The primary products from this activity are as follows:

• Software CI design specification

• Product V&V records for design products

• Milestone review of software design

" Recommended methods

• Structured design (Table 5–16)

• Object-oriented design (Table 5–17)

NASA-GB-001-96 46

Table 5–16. Structured Design Method

Summary Description
and Discussion

Structured design is a method of designing a product from a functional point
of view. Structured design includes the use of structure charts, structured
English, data flow diagrams, data dictionaries, decision tables, and decision
trees to develop a structured design specification.

Advantages Familiar to most software designers

Disadvantages There is empirical evidence within NASA that components designed using
structured methods are less reusable and less maintainable than those using
object-oriented methods

It is sometimes difficult to transform data flow diagrams from the Software CI
Requirements Definition and Analysis activity into structure charts in this
activity

Most appropriate
when ...

Product being engineered is one-of-a-kind and is expected to have a relatively
short life time (for example, up to a few years)

Key products Software design specification (SWDS), including the following:

• Data flow diagrams (DFDs)
• Structure charts
• Function specifications
• Data dictionaries
• Traceability matrices (maps software design components to software

requirements)

Table 5–17. Object-Oriented Design Method

Summary Description
and Discussion

Object-oriented design is a method of designing a product in terms of the
objects that the system is modeling and operations that pertain to those
objects.

Advantages • There is empirical evidence within NASA that use of object-oriented
technology facilitates reuse

• Felt by some NASA practitioners to be a more natural, intuitive approach
than traditional structured approaches, resulting in products that are more
maintainable and modifiable

Disadvantages • Can be difficult for personnel with a structured design background
• Unless a recognized object-oriented method is chosen (for example,

Booch, OMT), CASE tool support is limited or nonexistent
Most appropriate

when ...
Reusability, maintainability, or modifiability of the products developed is an
important objective

(The consensus of NASA personnel who have applied object-oriented
methods is that object-oriented technology is applicable in most situations.)

Key products Software design specification (SWDS), including the following:

• Refined object diagrams
• Traceability matrices (maps software design components to software

requirements)

47 NASA-GB-001-96

" Recommended techniques

The same techniques recommended in Section 5.2.1 (Software CI Requirements
Definition and Analysis) are often useful in defining and evaluating alternative
software CI designs.

Tailoring Guidance for the Design Activity

When there is a high level of design reuse, the architectural design probably already exists and
need not be considered a separate element of the design activity. However, be sure to highlight
changes from the reused architectural design.

!!
TIPS

l When requirements are especially volatile, increase the rigor
of traceability between requirements and design. If there is a
change in requirements, then the affected design areas can
be identified quickly.

l Include experts in the implementation language, operating
system, and other specialties as appropriate in reviewing the
design; they each can provide important input regarding
their areas of expertise.

l NASA has had considerable success using team inspections
(see Table 5–22 and Reference 13) for V&V of design
products.

5.2.3 Software CI Implementation and Testing

This activity consists of two essential elements:

1. Implementation and unit testing

2. Integration and testing

NASA-GB-001-96 48

5.2.3.1 Software Implementation and Unit Testing

Activity Requirements

üü
Software Implementation and Unit Testing

Objective. The objectives of software implementation and unit testing are (1) to convert the
software design into computer programs and computer databases and (2) to test the software at
a low level (unit level). (Units may be screens, file formats, reports, etc., as well as source
code-oriented components. They also include NDI components.)

Key elements, roles, and responsibilities. This activity consists of two fundamental steps:
implementation and unit testing.

• Implementation. Software implementers develop and record software corresponding to each
software unit identified in the software CI design. This activity includes, as applicable,
designing the unit, coding computer instructions and data definitions, building databases,
populating databases and other data files with data values, and performing other activities
needed to implement the design. Software units in the design might or might not have a one-
to-one relationship with the code and data entities (routines, procedures, databases, data
files, and so forth) that implement them or with the computer files that contain those
entities. For example, Ada units may comprise more than one code entity.
New and modified unit designs and new and modified hand-coded software units undergo
inspection in accordance with Section 5.2.6, Software Product Validation and Verification.

• Unit testing. Unit testing verifies a unit’s logic, computations, functionality, and error
handling. Newly developed or extensively modified units undergo unit testing. Conduct unit
testing only after the code has been certified. Units may be tested in isolation or in
conjunction with other units. (Define, in the software plan, the overall unit testing approach
to be used.) A test plan written by the unit tester (usually the same person as the unit
implementer) provides informal guidelines. The unit tester prepares the test data and any
necessary drivers or stubs, and then executes the test plan to verify logic paths, error
conditions, and boundary conditions. The unit tester verifies each unit’s designed functions,
internal code paths, and error handling in accordance with the unit test approach defined in
the test plan. Software implementers and software unit testers analyze the results of unit
testing and record the test and analysis results in appropriate product V&V record files.
Software implementers revise the software as necessary, and software unit testers perform
necessary retesting; they also update other software products (for example, unit-level
designs) as needed, based on the results of unit testing. When the unit tester is the
implementer, a peer usually reviews test results for accuracy and completeness, then
certifies the tested unit.
COTS, GOTS, reused, and other NDI software products also undergo some level of V&V
and preparation for integration, as defined in the software plan. (Refer to
Appendix Appendix C. for more specific guidance in testing or evaluating NDIs.)

Primary products. The primary products from this activity are as follows:

• Unit-level design revisions

• Unit-level test plans, procedures

• Unit-tested software

• Product V&V records for implementation and unit testing products

49 NASA-GB-001-96

" Recommended testing methods

Because software testing is a key element in several required software engineering
activities and because different testing methods are appropriate in different
situations, the proven testing methods are summarized in one section of this
handbook, Section 5.2.6, Software Product Validation and Verification.

Tailoring Guidance for Unit Testing

The formality and rigor of unit testing will vary depending on the unit’s complexity and
criticality. Units that are especially complex or critical may need to be tested in isolation, using
test drivers and stubs. Otherwise, the testing may be conducted on a collection of related units,
perhaps in conjunction with integration testing. Select the level of formality and rigor that is most
appropriate and cost-effective for the project as a whole or for various parts of the system.

!!
TIPS

l Use path coverage testing for control units; use functional
testing (black box and white or clear box) for algorithmic
units.

l For high-reuse systems, concentrate unit testing activities on
new and modified components.

NASA-GB-001-96 50

5.2.3.2 Software Integration and Testing

Activity Requirements

üü
Software Integration and Testing

Objective. The objectives of software integration and testing are (1) to integrate the software
components, which have been tested at a low level (unit level), into the software product at
increasingly higher levels of integration and (2) to V&V the resulting software product.

Key elements, roles, and responsibilities. Integration and testing means integrating the
software corresponding to two or more software components, testing the resulting software
aggregate to ensure that it works together as intended, and continuing this process until all
planned software in each software CI is integrated and tested. Integration testing (also referred
to as module, string, and thread testing) verifies the internal integrity of a collection of
logically related units (that is, a module), checks the module’s external interfaces with other
modules, data files, external input and output, etc., and verifies the designed functions of
logical groups of components. (Some integration and testing may take place during unit
testing. The requirements outlined in this subsection are not meant to duplicate those
activities.)

• Although a formal test plan is sometimes not required, integration testing is more carefully
controlled than unit testing, thus at least an informal test plan is needed. Software
integrators and testers establish test plans in terms of inputs, expected results, and V&V
criteria. The test plans cover all aspects of the software CI architectural design. Software
integrators and testers perform integration and testing in accordance with the integration test
plans and procedures.

• During integration testing, the software is slowly built up by adding a few units at a time to
a core of modules that have already been integrated. Integration testing is usually performed
by the implementers responsible for the components being integrated. Software
implementers and software integrators and testers analyze the results of integration and
testing, and record the test and analysis results in appropriate product V&V record files.
Software implementers revise the software as necessary, and software integrators and testers
perform necessary retesting. They update other software products (for example, software
design documents) as needed, based on the results of integration and testing.

• The last stage of this testing is software implementation team-internal software CI testing,
which approximates software CI qualification testing.

• Conduct the following support activities in conjunction with this activity:
– Finalize the products of this activity by holding milestone reviews in accordance with

Section 5.2.9, Milestone Reviews.
– Control products of this activity in accordance with Section 5.2.7, Software

Configuration Management.

Primary products. The primary products from this activity are as follows:

• Integration and test plans, procedures

• Integrated, tested software

• Product V&V records for integration and testing products

• Milestone review of readiness for qualification testing

51 NASA-GB-001-96

" Recommended integration methods

• Top-down method (Table 5–18)

• Bottom-up method (Table 5–19)

• Functional path method (Table 5–20)

Table 5–18. Top-Down Method

Summary Description
and Discussion

Integration follows a top-down approach, where lower level modules are
added to the top-level driver, level by level, until all components have been
integrated and tested.

Advantages Integrated, tested system can be used as drivers (does not need drivers for
higher level calling routines)

Disadvantages Needs stubs for lower-level called components until the real components
become available

Most appropriate
when ...

• Architectural design is broad and shallow (for example, transaction
processing)

• Emphasis is on high-level interfaces
• Using high-level NDIs
• Beginning to integrate
• There is risk or uncertainty regarding the architectural design

Table 5–19. Bottom-Up Method

Summary Description
and Discussion

Integration follows a bottom-up approach, where low-level components are
integrated and tested with other low-level components, which are then
integrated and tested with other low-level components, and so on until all
components have been integrated and tested.

Advantages Does not need stubs for lower level called components

Disadvantages Needs drivers for higher level calling routines until the real components
become available

Most appropriate
when ...

• Architectural design is narrow and deep (for example, scientific systems)
• Working on utility components
• Working on standalone algorithmic components
• Using low-level NDIs
• Beginning to integrate

NASA-GB-001-96 52

Table 5–20. Functional Path Method

Summary Description
and Discussion

An end-to-end functional path (or thread) is constructed, to which other
modules are then added, until all components have been integrated and
tested.

Advantages • Tests functions or objects in context
• Helps assure that functional requirements are being addressed
• Requires fewer drivers, since the only driver required is the one needed to

initiate the thread
Disadvantages Harder to ensure complete testing coverage

Most appropriate
when ...

• Making enhancements to an existing system
• Verifying end-to-end data flows
• Integration has progressed to the point where there is an existing structure

to build into
• Architectural design is object-oriented

" Recommended testing methods

Refer to Section 5.2.6, for a discussion of recommended testing methods.

Tailoring Guidance for Integration Testing

Just as described for unit testing, the formality and rigor of integration testing will vary
depending on the module’s complexity and criticality. Modules that are especially complex or
critical may need to be tested in isolation, using test drivers and stubs. Otherwise, the testing may
be conducted on a collection of related modules. Select the level of formality and rigor that is
most appropriate and cost-effective for the project as a whole or for various parts of the system.

!!
TIPS

For high-reuse systems, concentrate integration testing
activities on new and modified components.

53 NASA-GB-001-96

5.2.4 Software CI Qualification Testing

Activity Requirements

üü
Software CI Qualification Testing

Objective. Software CI qualification testing independently verifies that software CI
requirements have been met and that the software contains its assigned functionality. (This
testing is similar to testing performed in the final stage of software integration and testing.)

Key elements, roles, and responsibilities. Software qualification testers are responsible for
this activity. They are not the same persons who performed detailed design or implementation
of a particular software CI, although the designers and implementers may contribute to the
process, for example, by contributing test plans that rely on their knowledge of the software
CI’s internal implementation.

• Software qualification testers define and record the test preparations, test plans, and test
procedures to be used for software CI qualification testing and the traceability between the
test plans and the software CI requirements. They prepare or acquire the test data needed to
carry out the test plans and notify the client in advance of the time and location of software
CI qualification testing.

• Software qualification testers perform software CI qualification testing of each software CI
in accordance with the software CI test plans and procedures.

• Software implementers and software qualification testers analyze the results of software CI
qualification testing and record the test and analysis results (including software problem
reports) in appropriate product V&V record files.

• Software implementers revise software as necessary. Software qualification testers conduct
necessary retesting and update other software products as needed, based on the results of
software CI qualification testing.

• Conduct the following support activities in conjunction with this activity:
– Finalize the products of this activity by holding milestone reviews in accordance with

Section 5.2.9.
– Control products of this activity in accordance with Section 5.2.7.

Primary products. The primary products from this activity are as follows:

• Qualification test plan, procedures

• Qualification tested software

• Product V&V records for software qualification testing products

" Recommended methods

Refer to Section 5.2.6 for a discussion of recommended testing methods.

NASA-GB-001-96 54

5.2.5 Preparing for Software Delivery

Activity Requirements

üü
Preparing for Software Delivery

Objective. Package the software and accompanying documentation for delivery to either the
customer (if the software CI is the final product) or to the NASA group responsible for
integrating software and hardware CIs into a higher level system.

Key elements, roles, and responsibilities. The software configuration manager prepares the
software delivery package for delivery to either the customer (if the software CI is the final
product) or to the NASA group responsible for integrating software and hardware CIs into a
higher level system. The QA representative usually provides an additional check that the
package is complete and accurate. The software delivery package includes a delivery letter
with version description, the software, and associated documentation, including all applicable
items in the software delivery package documentation standard. (If software is developed in
multiple releases, the software plan identifies the software to be delivered in each release.)

• Prepare the version description. The software configuration manager prepares the version
description, which includes the following components:
– List of requirements met by the delivered software
– Version identification of software and documentation to be delivered
– Build instructions
– Special operating instructions
– List of resolved problem reports and change reports
– List of unresolved problem reports

• Prepare the software. The software configuration manager prepares the source files and
executable software to be delivered, including any batch files, command files, data files, or
other software files needed to regenerate, install, and operate the software on its target
computer(s).

• Prepare the as-built software design documentation. Produce this information if the
customer requires that it be delivered or if software team personnel will maintain the
software CI. The software team updates the design specification of each software CI to
match the as-built software. The information includes all applicable items in the SWDS
documentation standard.

• Prepare the software user’s information. Produce this information if the customer requires
that it be delivered or if software team personnel will operate the software CI. The software
team identifies and records information needed by users of the software (persons who will
operate the software and persons who will make use of its results). The information includes
all applicable items in the software user’s guide documentation standard.

Activity requirements continued on next page

55 NASA-GB-001-96

Activity requirements continued

Requirements for documentation may be satisfied by substituting commercial or other manuals
that contain the required information. The documentation identified in this section is normally
developed in parallel with software engineering and is ready for use in software CI testing.

• Conduct the following support activity in conjunction with this activity:
– Control products of this activity in accordance with Section 5.2.7, Software

Configuration Management.

Primary products. The primary products from this activity is a software delivery package
that includes the following:

• Delivery letter with version description

• The software (executable software, software source files)

• Accompanying documentation (as-built software design documentation, software user’s
guide)

NASA-GB-001-96 56

5.2.6 Software Product Validation and Verification

Note: Recall that this is the first of four sections describing the group of support engineering
activities shown in Figure 5–8. (See the beginning of Section 5.2.)

Activity Requirements

üü
Software Product Validation and Verification

Objective. Independently evaluate software products to ensure they meet all requirements
imposed on them (functional and performance requirements as well as product standard
requirements).

Key elements, roles, and responsibilities.

• Software team members perform in-process V&V of the software products generated in
carrying out the requirements of this guidebook. Software products are evaluated against
their specifications or requirements at each stage of the product’s evolution (see
21) to ensure that the right product is being built and the product is being built right. The
two primary methods used for software product evaluation are peer reviews (for paper-
oriented products) and testing (for executable products). The software products to be
evaluated are identified in this guidebook in conjunction with each of the engineering
activity descriptions.

• The persons responsible for evaluating a software product are not the persons who
developed the product; although the persons who developed the software product may be
involved, for example, as participants in a walkthrough of the product before, or as a part of,
its inspection.

• Software team members prepare records of each software product V&V and the project
maintains those records for the life of the project. Software product V&V records include
(but are not limited to) inspection and certification records (when the V&V method is
inspection) and problem and test reports (when the V&V method is testing). Problems in
software products under configuration control at the project level or higher are handled as
described in Section 5.2.7, Software Configuration Management.

Primary products. The primary products from this activity are software product V&V
records, including the following minimum information:

• Identification of the product evaluated

• Product V&V method used

• Criteria used in the V&V

• Problems identified in the product (These are variously referred to as SPRs (system or
software problem reports), STRs (system or software trouble reports), DRs (discrepancy
reports), and IDRs (internal DRs).)

• Final resolution of the problems

• Certification that the product satisfies V&V criteria

57 NASA-GB-001-96

Table 5–21. Software Product V&V Summary

Software product Is evaluated against (at least) the
following requirements or design

specification ...

... Usually using the following product
V&V method(s)

Software requirements
specification (SWRS)

System requirements allocated to the
software CI

Walkthroughs; document reviews;
inspection

Software design
specification (SWDS)

SWRS Walkthroughs; document reviews;
inspection

Unit-level design
specifications

SWDS (detailed design) Inspection (per unit design
certification criteria)

Unit-level code Unit-level design specifications Inspection (per unit code certification
criteria)

Unit testing (per unit test plan)
Integrated sets of units

(modules) up to the CI
level

SWDS (detailed design) Integration testing (also known as
module, string, thread testing) (per
integration test plan)

Software CI build Initially, based on SWDS; later,
evolving toward SWRS

Build qualification testing (BQT) (per
BQT plan)

Software CI release Initially, based on SWRS; later,
evolving toward system
requirements allocated to the
software CI

Formal (release) qualification testing
(FQT) (per FQT plan)

Software delivery to
customer

System requirements allocated to the
software CI

Acceptance testing (AT) (per AT plan;
when the system is a software
system, FQT is the AT)

" Recommended methods

• Peer review methods

– Inspection method (Table 5–22)

– Walkthrough method (Table 5–23)

– Document review method (Table 5–24)

– Demonstration method (Table 5–25)

• Testing methods

– Functional (black box) testing (Table 5–26)

– Structural (white or clear box) or coverage (statement, branch, or
path) testing (Table 5–27)

– Statistical testing (Table 5–28)

– Regression testing (Table 5–29)

– Cleanroom (Table 5–31)

NASA-GB-001-96 58

Table 5–22. Inspection Method

Summary Description
and Discussion

Inspections are well-defined peer reviews that are intended to verify
correctness, quality, and compliance with requirements and standards. There
are two types of inspection: One-on-one and team. A one-on-one inspection
relies on a single inspector; team inspections include two or more. (However,
studies conducted within NASA as well as other parts of the software industry
clearly show that two or more inspectors are far more effective in discovering
defects than a single one (Reference 14).) The primary use of inspections is
to find defects; secondary uses include exposing team members to details of
other parts of the system, helping increase awareness of the importance of
paying attention to details when creating products, helping more junior
personnel identify more subtle defects, and increasing the skills of junior
personnel by exposing them to the techniques used by more senior staff
members.

Product certification is used as input to the project’s progress measurement
process. Defects found by inspections (which are recorded on inspection and
certification records) are used as input to the defect causal analysis process.

Advantages Very thorough

Disadvantages Sometimes misapplied—either focuses only on minor defects, such as
formatting issues, or done as a formality to certify a product after informal
peer reviews have already been performed and no further defects are known.

Most appropriate
when ...

• Overall development time is tight
• Time allocated to higher level testing is tight
• Product quality goals are high

Key products • Inspection and certification records (software product V&V records)
• Inspection data collection forms

Table 5–23. Walkthrough Method

Summary Description
and Discussion

Walkthroughs are primarily a method for communicating information to team
members. Walkthroughs are not intended to be a defect-finding tool; however,
obvious problems are sometimes identified during a walkthrough.

Advantages Quick, effective, relatively informal method for sharing information with peers.

Disadvantages Sometimes used in place of inspection method (walkthroughs are not nearly
as thorough as inspections; defects are likely to escape detection until later in
the life cycle, when effort to repair is greater).

Most appropriate
when ...

Information needs to be communicated to others.

Key products • Comments from team members
• Questions to be answered
• Action items

59 NASA-GB-001-96

Table 5–24. Document Review Method

Summary Description
and Discussion

Document reviews are peer reviews of a finished document that are intended
to verify completeness, correctness, consistency, quality, and compliance with
standards

Advantages Enables review of all parts of a document in context with each other

Disadvantages Review is not performed until the document is complete (or nearly complete)

Most appropriate
when ...

A complete document must be reviewed

Key products Review and certification records (software product V&V records)

Table 5–25. Demonstration Method

Summary Description
and Discussion

Demonstrations are most frequently used in conjunction with prototypes. The
purpose of a demonstration is to solicit feedback from another group (for
example, end users of the product).

Advantages • Facilitates early evaluation of product characteristics in terms of product’s
look and feel

• Encourages customer and end user participation
Disadvantages • Effective demonstrations require careful preparation (that is, they take

extra time and effort)
• May lead customer and end users to believe that product is (almost) done
• Evaluation may occur later in phase than would occur using other methods
• Can lead to requirements growth in terms of nice-to-have features

Most appropriate
when ...

Alternative approaches need to be evaluated (for example, user interface
techniques)

Key products • Prototypes
• Demonstration summary, results, or agreements

NASA-GB-001-96 60

Table 5–26. Functional Testing Method

Summary Description
and Discussion

In functional testing, sometimes referred to as black box testing, verifying
functionality and correct interfacing of software components is the focus. The
tester does not need to understand the internal design of the software
component(s) under test, nor how it is implemented—simply what the
software is expected to do.

Functional testing is often organized based on threads of software
components that accomplish a higher level function, and is sometimes based
on operational scenarios. NASA software testers have found tests based on
operational scenarios to be very effective at uncovering errors.

Advantages • Not overly time-consuming
• Ensures that functional requirements are tested
• Can be performed by testers without detailed knowledge of design of the

software
Disadvantages • Less likely to detect defects in parts of software that are not frequently

executed
• Identifies symptoms of defects, not necessarily their causes
• Robustness of product is not established

Most appropriate
when ...

A primary objective of the testing is to verify

• Satisfaction of requirements
• Correct interfacing of components

Key products • Test plans and procedures, including traceability to design or requirements
specification (see Table 5–21)

• Test records (software product V&V records)

61 NASA-GB-001-96

Table 5–27. Structural or Coverage Testing Method

Summary Description
and Discussion

Structural testing, sometimes referred to as clear box or white box testing, is
testing in which verification of correct implementation of the software design is
the focus. The tester must understand the internal design of the software
component(s) under test.

Coverage testing is a specific form of structural testing that is designed to
ensure that each statement or logic path or software component is executed
at least once.

Advantages • Increases confidence in structure of design and correct implementation of
the design

• More likely (than functional testing) to identify causes of problems
Disadvantages • Very time-consuming

• May miss aspects of functionality and of the “big picture”
• Requires in-depth understanding of software internals
• Sometimes difficult to force certain conditions

Most appropriate
when ...

• A primary objective of the testing is to verify correct implementation of the
software design

• A primary objective of the testing is to verify thorough exercise of all the
software paths

• Lower level component testing is being performed (that is, unit level or
integration level)

• Control-oriented or safety-critical components are being tested
Key products • Test plans and procedures, including traceability to design or requirements

specification (see Table 5–21)
• Test records (software product V&V records)

Table 5–28. Statistical Testing Method

Summary Description
and Discussion

Statistical testing is testing based on a detailed assessment of expected
usage profiles of characteristics of the software that are especially important
to the customer. Such characteristics include assessing which software
components will be executed most often, which components can cause
catastrophic results if defects are present, etc. Statistical testing is usually
based on operational scenarios.

Advantages Concentrates testing effort on parts of the software that are most important to
the customer

Disadvantages • Requires an in-depth understanding of how the software will be used
operationally

• Increases possibility that defects will remain undiscovered in less
frequently exercised parts of the software

Most appropriate
when ...

• Testing efficiency is at a premium
• Testing period is at a minimum

Key products • Test plans and procedures, including traceability to design or requirements
specification (see Table 5–21)

• Test records (software product V&V records)

NASA-GB-001-96 62

Table 5–29. Regression Testing Method

Summary Description
and Discussion

Regression testing is retesting previously tested software after some kind of
change has been made. Changes may have been made in the software itself,
or in other software or hardware with which the software interfaces. The
purpose of regression testing is to verify that the changes have not adversely
affected previously tested software.

Regression testing does not usually include rerunning all test cases that were
originally used, but instead a predefined subset of the test cases that are
selected based on criteria established by the project team and the customer.

Advantages • Promotes confidence in an evolving product
• Ensures that obvious defects have not been introduced into the product

Disadvantages If regression test sets are not chosen carefully,

• Considerable effort can be expended if testing is overly exhaustive
• Defects can go undetected if testing is too superficial

Most appropriate
when ...

Changes are made to software that has undergone higher levels of testing
(that is, integration level or qualification level)

Key products Test records (software product V&V records)

One large NASA organization has found over the past few years that the methods summarized in
Table 5–30 have been used most often for unit-level, integration-level, and qualification-level
testing.

Table 5–30. Testing Methods vs. Testing Levels

Testing
Method

Unit Level
Testing

Integration Level
Testing

Qualification Level
Testing

Functional üü üü

Structural üü üü

Coverage üü üü

Statistical üü üü

Regression üü üü

The Cleanroom method (Reference 15) is an alternative approach that has been used successfully
on some NASA projects (Reference 16).

63 NASA-GB-001-96

Table 5–31. The Cleanroom Method

Summary Description
and Discussion

The Cleanroom method provides an alternative to traditional testing, with a
goal of preventing software errors rather than detecting them. Developed at
IBM in the late 1980s, Cleanroom relies on human discipline and intellectual
control to build quality into the final product instead of on computer-aided
program debugging to detect and remove errors

Advantages Successful application of the Cleanroom methodology can significantly
increase software quality and reliability, decrease test and debug time, and
minimize rework efforts

Disadvantages May not be applicable to large projects

Most appropriate
when ...

• Coders and testers can be split into two separate teams
• Software system size is less than approximately 50,000 lines of code

Tailoring Guidance for Software Product V&V

Select or adjust the product V&V methods based on the customer’s goals and objectives for cost,
schedule, and product qualities. For example,

• If high robustness or reliability is called for

– Increase the amount of peer review and testing

– Increase the degree of independence of the evaluators from the developer

• If less robustness or reliability is acceptable

– Have peer reviews and testing focus on those portions of the system that are
expected to have high use or are especially critical

Refer to Appendix Appendix C. for guidelines for evaluating NDIs. (Examples of procedures for
V&V can be found in Reference 17.)

!!
TIPS

l Make NDI V&V results reports available for other software
projects; submit them to your organization’s PAL.

l Use product certification as the completion criterion for
progress measurement.

l Store software product V&V records using an approach that
facilitates easy retrieval and data collection

NASA-GB-001-96 64

5.2.7 Software Configuration Management

Activity Requirements

üü
Software Configuration Management

Objective. Ensure that the integrity of a software product is known and preserved through its
development and maintenance.

Key elements, roles, and responsibilities. Software configuration management in each build
takes place in the context of the software products and controls in place at the start of the
build.

Configuration Identification—The software requirements analysts and design architects work
with the software configuration manager to identify software CIs, identify the subordinate
entities (or categories of entities) to be placed under configuration control, and assign a
project-unique identifier to each software CI and subordinate entity to be placed under
configuration control. These entities include the software products to be developed or used by
the software team. The identification scheme is geared to the level at which entities (for
example, computer files, electronic media, documents, software units) will actually be
controlled. The identification scheme includes a description or specification of the version,
revision, or release status of each entity.

Configuration Control—The software configuration manager establishes and implements
procedures defining

• The conditions under which each identified entity (or category of entity) is initially placed
under control

• The levels of control through which each entity must pass (for example, author control,
project control, customer control)

• The packaging, storage, handling, and delivery of controlled software products

• The mechanisms used to track problems reported in, and changes requested to, controlled
software products

• The steps to be followed to request authorization for changes, to process change requests, to
track changes, to distribute changes, and to maintain past versions

• The persons or groups with authority to authorize changes and to make changes at each
level (for example, software implementer, software manager, client)

Changes that affect an entity under customer control are proposed to the customer in
accordance with established procedures.

Configuration Status Accounting—The software configuration manager maintains records of
the configuration status of all entities that have been placed under configuration control at the
project level or higher. These records are maintained for the life of the project. They include,
as applicable, the current version, revision, or release status of each entity, a record of changes
to the entity since it was placed under configuration control, and the status of problem reports
and change requests that affect the entity.

Activity requirements continued on next page

65 NASA-GB-001-96

Activity requirements continued

Configuration Audits—For software CI releases that are to become operational, the software
configuration manager or QA representative conducts two types of audits of the software CI
after it has finished software CI qualification testing but before delivery:

• Physical configuration audit—this audit verifies that the software conforms to its technical
documentation and does not contain unauthorized changes

• Functional configuration audit—this audit verifies that the software CI meets all the
requirements allocated to it

(Planning for SCM is included as part of the software project planning activity. The SCM plan
(approach) may be physically included in the project’s software plan or may be packaged
separately. The software configuration manager works with the software manager in creating
and maintaining the SCM plan.)

Primary products. The primary products from this activity are as follows:

• Software configuration management approach (part of the software plan), which includes
identification, control, status accounting, and audits

• Controlled software products

• Software configuration management records

Tailoring Guidance for the SCM Activity

Levels of Control—There are two fundamental levels of software product change control:
baseline control (or configuration management) and local control. Apply the appropriate level
and type of control to verified products—intermediate as well as delivered, new as well as
changed from previously controlled versions.

Baseline Control. Some software products, for example, the software requirements, design, and
code, should have baselines established at predetermined points. These baselines are reviewed
and agreed on with the customer, and serve as the basis for further development. Baselines are
typically established in conjunction with milestone reviews, such as SSR (software
requirements), CDR (software design), and following software CI qualification testing and
physical configuration audit (PCA) or functional configuration audit (FCA) (code). Apply a
rigorous change control process to baselined items.

Local Control. Some software products, such as the software plan, may not need to be placed
under baseline control, but still need to be controlled locally. This implies that the version of the
product in use at a given time (past or present) is known (that is, version control), and changes
are incorporated in a controlled manner (that is, change control). For example, software plans are
typically placed under local control, but not baseline control.

The specific change control approach used by a software project will vary based on many factors.
On some projects, the customer is responsible for some or all SCM functions; in other cases, the
software team is responsible; and sometimes the responsibilities are split (for example,
requirements documents might be controlled by the customer, but design documents might be
under local control until the CI is delivered). Similarly, the configuration review function for a
large project might require a formal configuration control board (CCB) while the CCB for a four-

NASA-GB-001-96 66

person development project might be simply the software project manager and a customer
representative.

Each project’s product control approach is defined in the SCM portion of its software plan and
specifies which products are to be placed under baseline control and which will be under local
control. The approach defines what products will be controlled, under what conditions each kind
of product is initially placed under control, who controls it and where, and what has to occur to
change it.

Configuration Audits—It may not be necessary to perform FCAs or PCAs at CI level, they may
be done at higher level (for example, system or release). Nor is it necessary to perform FCAs and
PCAs separately, they may be done together on a system level. (Reference 17 includes examples
of procedures for FCAs and PCAs.)

Requirements Management—While a software product’s requirements are only one of several
subordinate entities that must be controlled, they are emphasized here because everything that the
software team does is based on those requirements. Poor management of requirements has
caused problems in the past.

If the customer does not require or maintain any form of software requirements specification, the
software team should document and control (to whatever degree of formality is deemed
appropriate) the product’s requirements as they understand them and as they are being
implemented. The customer should be given a copy of these software requirements to help ensure
that the software team and the customer have a common understanding of the basis for the end
software product. The requirements should be kept up to date in a controlled fashion.

!!
TIPS

l Identify products to be controlled early, but avoid placing
products under control too soon.

l Generally, conduct PCAs and FCAs in conjunction with
each other.

l The more builds or releases, the greater the importance of
change control.

l The more activities that are going on in parallel (especially
build or releases), the greater the importance of change
control.

67 NASA-GB-001-96

5.2.8 Software Quality Assurance

Activity Requirements

üü
Software Quality Assurance

Objective. Independent SQA is performed throughout the duration of the project to provide
confidence to management that approved processes are being followed and that high-quality
products are being produced.

Key elements, roles, and responsibilities. SQA is performed by a QA representative who is
organizationally independent of the software project and has the skills, responsibility,
authority, and organizational freedom to permit objective software product and process
evaluations. (The quality of the software product is the responsibility of the entire software
team.3)

The QA representative does the following:

• Ensures that each activity identified in the software plan is performed in accordance with
the plan

• Ensures that each software product identified in the software plan is prepared and undergoes
software product V&V and corrective action as defined in the plan

• Prepares records of software quality assurance activities and maintains those records for the
life of the project

• Provides recommendations for process and product improvement to the software manager
and software team

(Planning for SQA is included as part of the software project planning activity. The SQA plan
or approach may be physically included in the project’s software plan or may be packaged
separately. The QA representative works with the software manager to create and maintain the
SQA plan. The QA representative performs SQA activities in accordance with the SQA plan.)

Primary products. The primary products from this activity are as follows:

• SQA approach (part of the project’s software plan)

• SQA records

" Recommended Methods

• Auditing, monitoring, and assessing performance of activities and
qualities of products

3 In some environments, the term SQA is used to refer to more than “independent assurance of software products and
process”; that is, it sometimes includes peer reviews, testing, etc. This guidebook, however, restricts the SQA
activity to include only independent assurance; peer reviews, testing, etc. are included under the Software Product
V&V activity.

NASA-GB-001-96 68

5.2.9 Milestone Reviews

Activity Requirements

üü
Milestone Reviews

Objective. Jointly, that is, with customer and software team participation, (1) make a final
review of a completed product as a basis for its approval, (2) review readiness to proceed to
the next phase of engineering, and (3) identify project-level issues and initiate corrective
actions.

Key elements, roles, and responsibilities. Milestone reviews are typically associated with
life-cycle phases and are usually used to conclude one phase and transition to the next. They
are not intended to serve as product V&V; product V&V is assumed to have been performed
throughout preparation of the product(s) being reviewed at the milestone review. The software
manager and customer plan, and the software team takes part in, milestone reviews. Candidate
milestone reviews are listed in Table 5–32. There are two distinct aspects to milestone
reviews: technical and management.

Technical aspect—The key role in the technical aspect of milestone reviews is fulfilled by
persons who have technical knowledge of the software products that are the subject of the
review. Their objectives are as follows:

• Review final software products to establish an SCM baseline

• Provide insight and obtain feedback on the technical effort; surface and resolve technical
issues

• Assess project status; identify and discuss near- and long-term risks regarding technical
issues

• Agree on mitigation strategies for identified risks, within the authority of the technical
participants

• Identify risks and issues to be addressed by management (that is, those discussed under
Management aspect, below)

• Ensure ongoing communication between customer and software team technical personnel

(It is assumed that the customer’s technical representatives have reviewed the subject products
in advance.)

Management aspect—The key role in the management aspect of milestone reviews is fulfilled
by persons with authority to make cost, schedule, and resource allocation decisions. Their
objectives are as follows:

• Inform upper management about project status, directions being taken, technical agreements
reached, and overall status of evolving software products

• Resolve issues that could not be resolved by technical participants

• Agree on mitigation strategies for near- and long-term risks that could not be resolved by
technical participants

• Identify and resolve management-level issues and risks not raised within technical aspect

• Obtain commitments and customer approvals needed for timely accomplishment of the
project

Activity requirements continued on next page

69 NASA-GB-001-96

Activity requirements continued

Primary products. The primary products from this activity are as follows:

• The milestone review event itself

• Action items resulting from the review (for example, develop a strategy to mitigate a risk
identified during the review)

• Approved product(s)

• Approval to proceed to next phase

NASA-GB-001-96 70

Table 5–32. Candidate Milestone Reviews

Review Objective
These reviews are held to provide management with the information
necessary to assess progress and execute appropriate corrective action,
if required, regarding:

Concept or contents reviews
(SCRs, RCRs)

The operational concept for a software system or the content of a
release.

Requirements reviews (SRRs,
RRRs)

The specified requirements for a software system, subsystem, or
release and to establish the functional baseline.

System design reviews (SDRs) One or more of the following:

• The system- or subsystem-wide design decisions
• The architectural design of a software system or subsystem

and to establish the system design baseline.

Software specification reviews
(SSRs)

The specified requirements (that is, SWRS) for a software CI and to
establish the CI-allocated baseline. (SSRs may also be referred to as
SRRs when the system is essentially all software.)

Software design reviews (PDRs,
CDRs, BDRs, RDRs)

One or more of the following:

• The software CI-wide design decisions
• The architectural design of a software CI
• The detailed design (that is, SWDS) of a software CI or portion

thereof (such as a database or an upcoming build)

and to establish the CI development baseline.

Test readiness reviews (QTRRs,
RQTRRs, ATRRs)

One or more of the following:

• The status of the software test environment
• The test cases and test procedures to be used for software CI

qualification testing or system qualification testing
• The status of the software to be tested

The reviews that follow software CI qualification testing, PCA, and FCA,
but precede the next stage of testing (that is, either system-level
integration and testing or system installation and acceptance testing)
are held to establish the CI product baseline.

Operational readiness reviews
(ORRs)

One or more of the following:

• The readiness of the software for installation at operational sites
• The user and operator manuals
• The software product specifications
• The software version descriptions
• The status of installation preparations and activities
• The status of transition preparations and activities, including

transitioning the software development environment (if applicable) to
the maintenance organization

and to establish the operational baseline.

71 NASA-GB-001-96

" Recommended Methods

• Meetings (Table 5–33), for example, the milestone review may be held
as the final element of a JAD workshop (see Table 5–15)

• Presentations (Table 5–34)

• Demonstrations (Table 5–35)

Table 5–33. Meetings

Summary Description
and Discussion

Meetings come in a wide variety of sizes (for example, length, depth of
coverage, number of attendees) and degrees of formality. This variation can
be of considerable advantage to the software manager in that he or she can,
in conjunction with the customer, establish the most cost-effective structure
for the meeting.

Advantages • Usually most efficient and least costly method
• Easily scheduled and planned
• More conducive to greater interaction of participants than presentations

Disadvantages • Degree of formality may not be acceptable to the customer
• Sometimes difficult to control

Most appropriate
when ...

Agreeable to the customer

Key products • Action items
• Approved products(s)
• Approval to proceed to the next phase

Table 5–34. Presentations

Summary Description
and Discussion

Presentations, like meetings, come in a wide variety of sizes and degrees of
formality. Usually, however, additional effort is expended in preparing
materials designed expressly for the presentation.

Advantages Involve a larger audience than meetings

Disadvantages • Involve a larger audience than meetings
• Usually more formal than meetings and, therefore, require more

preparation effort; for example, may require producing presentation-quality
slides, holding dry runs

• Less conducive to interaction of audience than meetings
Most appropriate

when ...
Required by the customer

Key products • Action items
• Approved products(s)
• Approval to proceed to the next phase

NASA-GB-001-96 72

Table 5–35. Demonstrations

Summary Description
and Discussion

Demonstrations are used to display the current state of the software product
or prototypes of the product

Advantages Instill level of confidence that the project is on the right track

Disadvantages In early life-cycle phases, users may interpret the product to be finished and
not recognize (or accept) that additional work is required to develop an
operational product

Most appropriate
when ...

The user interface is crucial, or when a new technology is being applied

Key products • Action items
• Approved products(s)
• Approval to proceed to the next phase

Tailoring Guidance for the Milestone Reviews Activity

Milestone reviews may be conducted incrementally, dealing at each review with a subset of the
listed items or a subset of the system or software CI(s) being reviewed.

NMI 7120.4 (Reference 18) establishes management policies and responsibilities for major
system program and projects. The companion NASA Handbook (NHB) 7120.5 (Reference 19)
indicates that only PDRs and CDRs are required of all major programs.4 The candidate milestone
reviews discussed in this guidebook are recommended, but not required, for all software
development and maintenance projects, not only for major programs.

4 NMI 7120.4 defines the scope of a “major” program or project.

73 NASA-GB-001-96

!!
TIPS

l Make an effort to understand the customer’s preferred
audience for the review, and the perspective from which the
review material will be presented.

l Attempt to have representatives of the end users of the
product participate in milestone reviews.

l Ensure that the method and degree of formality chosen for
the milestone review are appropriate for the product(s)
being reviewed.

l Minimize the amount of material created especially for the
review; it adds cost and time to the project. Instead, use
appropriate portions of the products being reviewed.

l Review presentation material with the customer in advance.

l Dry-run presentations. This will help gauge timing, identify
loose ends, familiarize the presenters with the material, and
help prepare the presentation team for potential issues that
might be raised during the actual review.

l Dry-run demonstrations for the same reasons.

l Consider holding walkthroughs of the product for the
customer during the engineering process (that is, throughout
each life-cycle phase before its milestone review) to ensure
his or her awareness of the product’s evolution well before
the milestone review. (The milestone review should not be
the first time that the customer has reviewed the product.)

75 NASA-GB-001-96

6. Finishing the Software Plan—Defining the
Management Approach

he preceding two chapters described how to understand the scope and characteristics of
the work to be performed, and how to define an appropriate technical approach to perform
the work. This chapter describes the steps needed to define the management approach for

the project and to document and review the project’s software plan. (As recommended in Chapter
4, planning should be coordinated, as much as possible, with other groups responsible for related
software efforts.)

Activity Requirements

üü
Defining the Management Approach

Objective. Document the approach that the software manager will use to manage the software
engineering effort.

Key elements, roles, and responsibilities. The software manager defines the project’s
management approach by doing the following:

• Establishing the software project’s organizational structure

• Estimating and scheduling the work

• Planning other activities

• Reviewing the software plan

To facilitate the development of each project’s management approach and to avoid reinventing
the wheel, this guidebook contains a summary of effective, proven, recommended methods
from which the software manager can choose to satisfy the required common activities.

If, however, the manager believes that a different method would be more appropriate, then he
or she is encouraged to try it in a controlled fashion. That is, the manager includes a process
study of applying the alternative approach to quantitatively assess its overall effect on the
software product and process. (See Table 6–5.)

Whenever the software manager feels that additional activities or products would be useful, he
or she is expected to apply sound, professional judgment in decisions related to such topics.

Each project’s management approach is defined in its software plan.

Primary products. The primary product from this activity is as follows:

• Remaining management approach topics in the project’s software plan

The rest of this chapter provides guidance in accomplishing this required activity.

T

NASA-GB-001-96 76

6.1 Establishing the Software Project’s Organizational Structure
Activity Requirements

üü
Establishing the Organizational Structure

Objective. Define an effective organizational structure to carry out the selected technical
approach.

Key elements, roles, and responsibilities. Once the technical approach has been defined, the
software manager must define an appropriate organizational structure to carry out the technical
approach. Figure 6–1 illustrates a typical NASA software project structure. It depicts the basic
roles that are required on a software project. Record in the software plan a description of the
planned organizational structure.

Primary products. The primary product from this activity is as follows:

• Description of software project structure

Project Manager
(if appropriate) or
Senior Manager

[Project] Software
Manager

Software
Configuration (or
Change) Review

Board

Software
Configuration

Manager

Software
Requirements

Analyst(s)

Software
Designer(s)

Software
Implementer(s) &

Tester(s)

Software
Qualification

Tester(s)

Software Quality
Assurance

Independent

Figure 6–1. Typical Software Project Organization

Tailoring guidance

While Figure 6–1 illustrates a typical NASA software engineering organization, it does not imply
that different persons are responsible for each role. Quite the contrary, very often a single
individual may assume two or more roles on a typical software project (though care must be
taken when assigning personnel to roles in which independence is required). These roles may
also be filled by personnel from outside of the software team’s own organization (for example,
customer personnel may be responsible for certain roles).

77 NASA-GB-001-96

6.2 Estimating and Scheduling the Work
Activity Requirements

üü
Estimating the Work

Objective. Develop estimates of the size, effort, and schedule duration for the software work.

Key elements, roles, and responsibilities. The software manager estimates product size,
effort, and duration in accordance with local standards. Key software team members are often
consulted in this activity. Table 6–1 summarizes the three periods for which the software
manager develops estimates. Record these estimates in the software plan.

Primary products. The primary product from this activity is as follows:

• Estimates of software product size, effort, and schedule duration.

Table 6–1. Three Levels of Estimates and Plans

Period planned Purpose of estimate and plan

Project, start to finish • Provide customer with an estimate and plan for the full software effort.
• Ensure thorough high-level analysis of the full software effort.

Upcoming build Ensure thorough detailed analysis of the work to be accomplished in the next
build.

Fiscal year Develop plans that reflect the customer’s budget for the fiscal year.

Tailoring Guidance

Local standards for estimating size, effort, and duration are based on models derived from
historical records of similar projects developed by the same organization. The basis of a size
estimate for software projects, for example, may be actual counts of lines of codes, function
points, database transactions, or whatever unit is appropriate for the application domain.

An example of local standards for estimating can be found in the Manager’s Handbook for
Software Development (Reference 7) of the NASA Software Engineering Laboratory (SEL). The
SEL derived local estimation standards for all software developed or maintained within the Flight
Dynamics Division at GSFC. The SEL’s estimation models are based on the Constructive Cost
Model (COCOMO) (Reference 20) but are tailored to the local environment and based on
analysis of measurement data collected from software projects since 1976. A detailed explanation
of the derivation of the SEL estimation models can be found in the Cost and Schedule Estimation
Study Report (Reference 21). Further examples are available in the NASA Software
Measurement Guidebook (Reference 5).

!!
TIPS

The best estimate is still just an estimate. Expect to have to re-
estimate as a result of monitoring the status of the project (see
Section 7.1.2).

NASA-GB-001-96 78

Activity Requirements

üü
Scheduling the Work

Objective. Develop a schedule for performing the software engineering activities, identifying
when specific products will be delivered, and including a profile of the staffing levels required
to perform the work.

Key elements, roles, and responsibilities. Table 6–1 summarizes the three periods for which
the software manager develops schedules. Scheduling for a system or software CI that is to be
developed in multiple builds includes

• Overall planning for the project

• Detailed planning for the current build

• Planning for future builds to a level of detail consistent with the information available

The first step in software build planning is to lay out a series of one or more builds and to
identify the objectives of each build. The next step is to schedule the activities in each build.
The customer may set forth general milestones and have the software team provide specifics
or may provide specific schedules.

Record in the software plan, the milestone plan and events list, the work breakdown structure,
and the staffing plan.

Primary products. The primary products from this activity are as follows:

• Milestone plan and events list

• Work breakdown structure

• Staffing profile

" Recommended techniques

• Mini-Waterfall

• Timeboxes

Table 6–2. Mini-Waterfall

Summary Description
and Discussion

This is the traditional technique for planning builds. That is, each build
includes some emphasis on analyzing the requirements allocated to the build,
usually includes detailed design of the portion of the software that will be
implemented in the build, implementation and testing of the software, and
qualification testing of the build.

Advantages Technique is familiar to most managers

Disadvantages Basically the same as those described under Waterfall Life-Cycle Model
(Table 5–2) but not as significant in impact; that is, the requirements to be
implemented in the build must be known before beginning the build.

Most appropriate
when ...

The requirements to be implemented in the build are quite stable and well-
understood

79 NASA-GB-001-96

Table 6–3. Timeboxes

Summary Description
and Discussion

A timebox refers to a subdivision of a build created to achieve a unit of
production that is manageable in size, complexity, staffing, and duration. It is a
planning construct that controls functionality delivered by establishing fixed
resource and time budgets. That is, when the allocated time and effort have
been expended, it is time to move on to the next timebox.

Advantages Helps avoid “gold plating”

Disadvantages The product resulting from the timebox might not be complete in its own right

Most appropriate
when ...

• Functionality is not well-understood or is likely to change considerably
• Using the evolutionary development life-cycle model
• Developing prototypes
• Cycle time is critical

Tailoring Guidance for Planning Builds

• Avoid treating all software CIs as though they must be developed in lock-step,
reaching key milestones at the same time. Allowing software CIs to be on different
schedules can result in more optimal development.

• Similarly, avoid treating software components within a CI as though they must be
developed in lock-step, all designed by a certain date, implemented by a certain date,
etc. Flexibility in the scheduling of software components can also be effective.

• The required software engineering activities need not be performed sequentially.
Several may be taking place at one time, and an activity may be performed continually
or as needed throughout a build or across multiple builds. The activities in each build
should be laid out in the manner that best suits the work to be done.

!!

TIPS

l If early builds are devoted to prototyping, developing throw-
away software to arrive at a system concept or assist in
defining system requirements, it may be appropriate to
forego certain formalities, such as coding standards, that
will be imposed later on the deliverable software. If the
early software will be used later, such formalities may be
appropriate from the start. These decisions are project
dependent and should be recorded in the software plan.

l Consider making the first build a simple one to get the
project off to a good start; that is, to establish confidence in
the software team and the customer.

NASA-GB-001-96 80

6.3 Planning Other Activities
Activity Requirements

üü
Planning Other Activities

Objective. Several other elements must be addressed in the project’s software plan:

• Team training

• Risk management

• Technical performance measurement

• Process improvement initiatives

• Management measures

Key elements, roles, and responsibilities.

Plan for Team Training—The software manager is responsible for determining the project-
specific training needs of his or her team with respect to the application area, new
technologies to be employed, etc. Training is usually planned to be delivered just in time to
support the team’s activities. For example, if a new design method is to be used for the first
time, training in that method should be scheduled just prior to commencing the design activity.
Record training plans in the software plan.

Planning to manage risks—The software manager is responsible for performing risk
management in accordance with local standards. Record the risk management approach in the
software plan. (See Reference 8.)

Planning to monitor technical performance measures—There are sometimes situations in
which a software CI has specific performance requirements (explicitly defined or implicitly
determined), such as maximum processor or memory utilization, minimum response time, etc.
Technical Performance Measurement (TPM) enables the software team to monitor and fine
tune the product to meet its performance requirements, thus mitigating the risks associated
with such requirements. In such cases, the software manager integrates TPM into the software
engineering process in accordance with local standards. Record the TPM approach in the
software plan.

Planning for software process improvement activities—Every software project presents an
opportunity to study or improve the software process. Process studies may be conducted any
time a life-cycle or activity-related method other than those recommended in this guidebook is
selected by the software manager. These studies enable the software manager to assess the
impact of the new technology on the overall product and process, or gain a more in-depth
understanding of regularly used technologies. (See Section 2.2.3.) The software manager
documents the planned use of a study in the software plan.

Selecting measures to facilitate monitoring and controlling the project—The software
manager defines a set of software management indicators to facilitate monitoring the progress
of the project. Table 6–4 lists required software engineering activities and summarizes
measures that have proven worthwhile for monitoring those activities on NASA software
projects. Record in the software plan the measures to be used, and how they will be collected
and analyzed.

Activity requirements continued on next page

81 NASA-GB-001-96

Activity requirements continued

Primary products. The primary products from this activity are as follows:

• Training plan

• Risk management plan

• TPM plan

• Process improvement plan

• Management measurement plan

Table 6–4. Required Activities and Related Measures

Activity Cost Schedule Defects Other

Software project planning üa

Software CI requirements definition and
analysis

ü ü ü Risks, TPMc

Software CI design ü ü ü Risks, TPMc

Software CI implementation and testing ü ü ü Risks, TPMc

Software CI qualification testing ü ü ü Risks, TPMc

Preparing for software delivery

Software project close-out

Software product V&V ü

Software configuration management üb

Software quality assurance üb

Milestone reviews ü

Software team preparation

Project monitoring and controlling üa

Software process improvement ü ü

System-level considerations ü ü

Notes:
a Some NASA organizations typically collect managers’ total effort regarding project planning and managing the project (as

opposed to specific elements within these activities), because they know (quantitatively) that this amount of effort is a small
fraction of the total software engineering effort.

b Typically, only total effort and schedule are collected and analyzed.
c If applicable

" Recommended process improvement method

• Process studies (Table 6–5) (Reference 2)

NASA-GB-001-96 82

Table 6–5. Process Studies

Summary Description
and Discussion

A process study is a method by which the software manager can objectively
determine the impact of introducing a new technology into the software
engineering process. The study consists of identifying the objective of the
change (for example, reduce cost of development), identifying the new
technology, recording the baseline characteristic to be improved (for example,
development cost of like products), and identifying the measures to
demonstrate whether the objective has been attained. The project team
applies the new technology to its work. The resulting measures are compared
with the baseline characteristics, thus quantifying the effect of the new
technology on the product or process. The results are recorded and made
available for use by others.

Advantages Provides an objective means of assessing a new software technology.

Disadvantages None

Most appropriate
when ...

A new technology is being used.

Key products • Process study plan
• Process study report

!!
TIPS — Team training

l Work with your organization’s training committee to
determine what training techniques are available and will
best meet the software team’s needs.

l Have local experts train in their specialty areas.

l Have QA personnel conduct training. They are well versed
in your processes and product standards.

l For training in group-oriented activities (for example,
testing, inspections), have the software team go through the
training as a group. Include in the group, personnel who are
already experienced in the subject; this allows those people
to relate the training material specifically to the project.

!!
TIPS — TPM

Consider planning to develop prototypes to facilitate actual
measurement of certain performance-related aspects of the
software product. For example, when performance
requirements are levied on a database-intensive software
product, plan to develop a simple prototype driver to learn
where the performance limits of the database package lie.

83 NASA-GB-001-96

!!
TIPS — Management Measures

l There’s always some effort associated with data collection,
analysis, and reporting. Collect, analyze, and report only
data that are worthwhile to the project, the organization, and
NASA.

l Work with your QA representative and process
improvement personnel to determine an appropriate set of
measures and data collection approach.

l Ensure from the start that you know what data will be
required at project close-out and put appropriate
mechanisms in place to facilitate providing them.

6.4 Reviewing the Software Plan
Activity Requirements

üü
Reviewing the Software Plan

Objective. Ensure that stakeholders are aware of, and have an opportunity to review, the
software plan.

Key elements, roles, and responsibilities.

• Review the plan using the locally defined review process.

• Iterate until stakeholders are satisfied with the estimates and plan.

• Distribute copies of the plan to stakeholders (that is, to team members, and appropriate team
and customer management) and use the plan to run the software project.

Primary products. The primary product from this activity is as follows:

• Project’s software plan

85 NASA-GB-001-96

7. Running the Project

hapters 3 through 6 discussed how to develop a plan to facilitate running the project. This
chapter focuses on the software manager’s activities during the execution of the project.
Those activities are shown in the shaded portions of Figure 7–1:

• Using the software plan to guide the project in its engineering efforts

• Closing out the project.

 D
evelop initial project softw

are plan

Monitor and control software project
(maintain project software plan

and records as necessary)

Independently assure software products and activities (SQA)

Manage configuration (SCM)

Perform required technical activities
(i.e., software CI requirements definition and

analysis through qualification testing,
including interim deliveries)

until final product is delivered

Time

Validate and verify (V&V) software products

Participate in milestone reviews

D
eliver final

softw
are products

C
lo

se o
u

t so
ftw

are p
ro

ject

Prepare software team

Figure 7–1. Running the Project

C

NASA-GB-001-96 86

7.1 Managing the Project
Activity Requirements

üü
Managing the Project

Objective. Software managers are expected to complete their projects on schedule and within
a allowable percentage of the baseline budget. The manager uses an integrated set of
management techniques to aid in accomplishing this objective.

Key elements, roles, and responsibilities. Managing the project includes the following key
elements:

• Preparing the software team

• Monitoring and controlling

• Communicating with the stakeholders

• Maintaining the project software plan

• Keeping records

Subsequent subsections provide details on each of these elements.

Primary products. The primary product from the activity is as follows:

• Management products (details in following subsections)

7.1.1 Preparing the Software Team

Activity Requirements

üü
Preparing the Software Team

Objective. Ensure the software team is prepared for upcoming activities.

Key elements, roles, and responsibilities. The software manager ensures the software team is
prepared for upcoming activities by acquiring training as needed and by holding phase
orientation meetings.

The software manager ensures delivery of project-specific training based on the training plan
recorded in the software plan. The phase orientation meetings ensures that the software team is
aware of and understands the products that will be created during each life-cycle phase (or
particular major activity), as well as the activities, methods, procedures, product standards,
and support tools that will be used to generate the products.

Primary products. The primary product from the activity is as follows:

• Training records

87 NASA-GB-001-96

7.1.2 Monitoring and Controlling the Project

Activity Requirements

üü
Monitoring and Controlling the Project

Objective. The software manager uses software management indicators to help monitor the
status of the project and to initiate corrective action in a timely fashion.

Key elements, roles, and responsibilities. The software manager monitors the project by
comparing actual measured values with planned or expected values (that is, those measures
identified in Section 6.3). When variations between actual performance and the plan become
excessive, the manager initiates appropriate corrective actions. (See Reference 5 for
examples.)

Managing Effort, Schedule, and Quality

• Collect actual effort expended on software engineering activities using team members’ time
accounting data. Use software product V&V records (certification records specifically) as a
reliable, consistent tool to support monitoring product completion.

• Use software product V&V records as a reliable, consistent tool to support monitoring
product quality.

By monitoring progress, productivity, and quality, the software manager will discover whether
or not the plan is effective. Although measurement data alone are not sufficient for gauging
the plan’s effectiveness, they can help the manager to perform some assessment.

Managing Risks—Risk management requires that software managers identify, analyze, and
plan to mitigate risks. Review and reassess risks regularly. When new risks are identified,
analyze them immediately and plan for mitigation. Close out risks that no longer exist.

Managing Critical Technical Performance Measures—Monitor critical technical performance
measures in accordance with local standards.

Primary products. The primary products from this activity are as follows:

• Status records

• Corrective actions

!!
TIPS

Appoint a release leader to coordinate and support the
development of a release throughout its implementation,
testing, and transition to the client. Coordinating release-
specific activities through a single point of contact enables the
software team to stay focused on the task at hand; that is,
finishing the release.

NASA-GB-001-96 88

7.1.3 Communicating with Stakeholders

Activity Requirements

üü
Communicating with Stakeholders

Objective. The effective use of status reports and meetings can facilitate timely
communication among the various stakeholders in a software project to ensure that there are
no surprises.

Key elements, roles, and responsibilities. The software manager is responsible for
communicating with the stakeholders. Table 7–1 lists recommended status reports and
meetings and their purposes.

Primary products. The primary products from this activity are as follows:

• Status reports

• Meetings

Table 7–1. Recommended Status Reports and Meetings

Mechanism Purpose

Status reports

Weekly progress reports To ensure regular communication of recent activities and outstanding issues
Monthly status reports To ensure regular review and reporting of progress and cost
Meetings

Periodically with the
project team members

• To communicate or discuss issues and changes
• To provide a forum for questions and answers
• To strengthen team cohesiveness

Periodically with the
customer

• To communicate or discuss issues and changes
• To maintain insight into customer’s “hot buttons”

With interfacing groups as
needed

To communicate or discuss issues and changes

!!
TIPS—Meetings

l Hold status meetings regularly, not just when there is a
problem.

l Keep lists of action items and review them at each meeting

l Follow up with meeting minutes to all meeting attendees

89 NASA-GB-001-96

!!
TIPS—Status

Post progress and quality status for all to see. Numerous
software project managers regularly post their projects’
progress (planned vs. actuals) and quality (expected vs.
observed) status for their teams to see. When (for example) a
project is behind schedule, posting the status often encourages
the team to catch up or even get ahead of the plan.

!!
TIPS—Product Handovers

Any time a product is handed over from one group to another,
internal groups as well as external, hold walkthroughs of the
product in which the supplier briefs the consumer. Two-way
walkthroughs are even more comprehensive, where the
supplier briefs consumer; then consumer briefs supplier as to
understanding, often raising questions. Examples of product
handovers are shown in Figure 7–2.

System requirements allocated to SW CI ðð Software CI requirements definition team

Software CI requirements ðð Designers

Software design ðð Implementers

Tested code components ðð SW CI integrators and testers

Tested software CI ðð System integrators and testers

Tested system ðð Customer

Figure 7–2. Product Handovers

NASA-GB-001-96 90

7.1.4 Maintaining the Software Plan

Activity Requirements

üü
Maintaining the Software Plan

Objective. The software plan will be a successful management aid only to the extent that it is
followed. Expect the plan to change and evolve as the project continues, so that throughout the
development effort it provides the following:

• Documentation of the current project organization (that is, roles and responsibilities)

• A baseline reference against which to measure and compare actual project performance and
activities

• Detailed clarification of the technical and management approach being used

Key elements, roles, and responsibilities. The software manager is responsible for
periodically reviewing and assessing the effectiveness of the software plan. At the end of each
phase or build, review and revise if necessary the estimates of project size, effort, and
schedule, and update this information in the plan. (Do not, however, delete earlier estimates.
They provide a record of the planning process that will be needed for the software project
history and show which estimation techniques were successful and should be used again.)

An effectively maintained software plan documents the current strategy for the software effort.
Because it provides a uniform characterization of the project, it can be invaluable if changes
occur in team leadership. Ensure that the plan is realistic, otherwise continual modifications
will be required to reflect actual decisions or experiences. While the plan should be revised as
needed to reflect the current engineering environment, particularly regarding schedules and
organizational relationships, significant revisions should not be considered routine document
maintenance. For example, major shifts in technical approach or methodologies should occur
only if absolutely necessary.

When significant changes are determined to be necessary, the plan should be updated and
those updates should be communicated to all personnel who hold copies of the plan. Copies of
the plan should be provided to all personnel affected by the change.

Primary products. The primary product from this activity is as follows:

• Up-to-date software plan

91 NASA-GB-001-96

7.1.5 Keeping Project Records

Activity Requirements

üü
Keeping Project Records

Objective. Basic records are kept to facilitate tracking critical issues, to provide valuable
historical information for others to learn from, and to meet software requirements.

Key elements, roles, and responsibilities. The software manager is responsible for keeping
the following basic project records:

Action items—record and track action items

• From meetings with the client

• From milestone reviews

• From meetings with upper management

• From deficiencies found by audits

• Regarding outstanding requirements and design issues and questions

Software project history—At the end of each life-cycle phase (at a minimum) prepare a brief
summary of the phase. Record such topics as what went well, what didn’t, what surprises
sprang up, what should have been done differently, etc. This will form the foundation for the
final software project history report.

Primary products. The primary product from this activity is as follows:

• Project records

!!
TIPS

l Consider maintaining a daily or weekly diary that includes
(among other things):

– Actual completion dates

– Personnel changes

– When significant changes or problems were first
discovered or discussed

– When significant breakthroughs or brainstorms occurred

l Consider recording end-of-life-cycle phase summaries right
in the software plan. This is a simple means of almost
automatically producing the software history, right from the
start.

NASA-GB-001-96 92

7.2 Closing Out the Project
Activity Requirements

üü
Closing Out the Project

Objective. Finalize historical records of the software project for use by other software
projects, and process groups within the organization.

Key elements, roles, and responsibilities. The software manager prepares a software project
history that includes all applicable items in the organization’s software project history
documentation standard, and software project close-out data that characterizes both the final
product generated and the process used to accomplish the work. Forward a copy of the
software project history and the software close-out data to the organization responsible for
including it in the PAL.

Primary products. The primary products from this activity are as follows:

• Software project history (including software project lessons learned and recommendations
for improvement)

• Software project close-out data

!!
TIPS—Preparing the Project Software History Report

l Consider involving interested software team members in
completing the project’s software history report.

l Also consider involving the QA representative and a
member of a process group. They can help analyze and
package the results of any significant technology study that
was conducted on the project.

93 NASA-GB-001-96

!!
TIPS—Sharing Lessons Learned

Upon completion of every software project, there’s a wealth of
information that is vital to the rest of the organization and
needs to be shared. The following is a list of several
mechanisms that can facilitate sharing that information.
Consider using more than one of these mechanisms to ensure a
broad dissemination of this invaluable information.

l Lunch time seminars

l Managers’ and staff meetings

l Newsletters

95 NASA-GB-001-96

Appendix A. Glossary

Acceptance. An action by the customer (or an authorized representative) by which the customer
assumes ownership of software products as partial or complete fulfillment of software
requirements.

Activity. A unit of work that has well-defined entry and exit criteria. Activities can usually be
broken into discrete steps.

Adapted unit. An existing unit that changes substantially (more than 25 percent of its content is
changed, added, or deleted). Its origin is usually external to the project. (Contrast with new unit,
converted unit, transported unit.)

Architecture. The organizational structure of a system or software CI, identifying its
components, the component interfaces, and a concept of execution among the components.

Build. A version of software that meets a specified subset of the requirements that the completed
software will meet. (See also release.)

Certification. Written confirmation that a work product has been evaluated (for example,
inspected or tested) and any defects found by that evaluation process have been satisfactorily
resolved.

Configuration item (CI). System component (for example, hardware CI or software CI) that is
developed or purchased, controlled, accepted, and maintained separately from other system
components. In practice, it is a component that is convenient and sensible to document and
control as an entity. (See software configuration item.)

Converted unit. Existing unit that changes slightly (up to 25 percent of its content is changed,
added, or deleted). Its origin is usually external to the project. (Contrast with new unit, adapted
unit, transported unit.)

COTS (or GOTS) software. Commercial (or government), off-the-shelf software. COTS and
GOTS software includes (1) unique components that must be delivered with the product to
execute the operational software and (2) development tools that must be delivered with the
product to support maintenance of the software.

Customer. The organization that procures software products for itself or another organization.

Cycle time. Elapsed calendar time (not effort) required to complete a given piece of work. For
software efforts, cycle time usually refers to either (1) the full product engineering period (from
initial receipt of product requirements through acceptance by the customer of the fully functional
delivered product) or (2) a release cycle (from agreement on the requirements for the release
through acceptance by the customer of the delivered product). The latter case, the release cycle,
can pertain to new development releases as well as maintenance and enhancement releases. (See
also software life cycle.)

Design. Those characteristics of a system or software CI that are selected by the software team in
response to the requirements (see requirements). Some will match the requirements; others will

NASA-GB-001-96 96

be elaborations of requirements, such as definitions of all error messages in response to a
requirement to display error messages; still others will be implementation related, such as
decisions about what software units and logic to use to satisfy the requirements.

Development. Production of a new product that leads to delivery of all initially planned
functional capability. The new product may be built from newly created components, reused
components (with or without adaptations), GOTS components, and COTS components. (Contrast
with enhancement, maintenance; see also software engineering.)

Documentation. A collection of data, regardless of the medium (or media) on which it is
recorded, that generally has permanence and can be read by humans or machines. The
significance of this definition is that documents do not necessarily have to be separately bound
entities; they may comprise data in several media (for example, plans, CASE tools, databases).

Enhancement. A major addition or change in the functionality of an operational system; often
includes many of the same activities as new development. (Contrast with new development,
maintenance; see also software engineering.)

Firmware. The combination of a hardware device, computer instructions, and computer data that
reside as read-only software on the hardware device.

GOTS software. (See COTS/GOTS software.)

Inspection. A process whereby products are reviewed for correctness, completeness, quality, and
compliance with requirements and standards. The process is carried out by one or more peers of
the product’s developer. (Contrast with walkthrough.)

Joint application design (JAD). A facilitated workshop technique that brings together principal
stakeholders to solve a well-defined problem to produce a well-defined product or set of
products.

Life cycle. (See software life cycle.)

Life-cycle model. A framework on which to map activities, methods, standards, procedures,
tools, products, and services (for example, waterfall, spiral).

Life-cycle phase. A division of the software effort into non-overlapping time periods. Life-cycle
phases are important reference points for the software manager. Multiple activities may be
performed in a life-cycle phase; an activity may span multiple phases. (Contrast with activity.)

Maintenance. Implementation of problem fixes and minor enhancements to an operational
product. (Contrast with new development, enhancement; see also software engineering.)

Method. A technique or approach, possibly supported by procedures and standards, that
establishes a way of performing activities and arriving at a desired result.

Methodology. “A collection of methods, procedures, and standards that defines an integrated
synthesis of engineering approaches to the development of a product.” (Reference 22)

Milestone review. A process or meeting involving representatives of both the customer and the
software team, during which project status, software products, and project issues are examined
and discussed.

Module. A cohesive group of software units that performs a software function.

97 NASA-GB-001-96

New development. (See development.)

New technology. A technology that has not yet been proven to be effective in practice in a
particular NASA application area or domain. It may have been proven elsewhere, however. (See
also technology.)

Non-developed item (NDI). A component that is not newly created by the software team. This
includes reused components, COTS and GOTS components, and components developed by other
NASA groups or contractor personnel.

Organization. “A unit within [NASA] within which many projects are managed as a whole. All
projects within an organization share a common top-level manager and common policies.”
(Reference 22)

Phase. (See life-cycle phase.)

Policy. “A guiding principle, typically established by senior management, which is adopted by an
organization or project to influence and determine decisions.” (Reference 22) (Contrast with
procedure, standard.)

Procedure. A written description of the roles, responsibilities, and steps required for performing
an activity or a subset of an activity. (Contrast with policy, standard.)

Process. “A sequence of steps performed for a given purpose; for example, the software
engineering process.” (Reference 9)

Process asset library (PAL). A NASA library, including a life-cycle methodology description,
standards and procedures, guidebooks and handbooks, style guides, software profiles, key
lessons, study results, tailored processes, examples of acceptable products, etc.

Product. (See software product.)

Project. (See software project.)

Project process. A tailored version of the organization’s standard process, defining and
integrating specific life-cycle models, activities, methods, procedures, standards, and tools used
to accomplish delivery of the project’s required products and services. It is defined in the

Prototype. An early experimental model of a system, system component, or system function that
contains enough capabilities for it to be used to establish or refine requirements, or to validate
design concepts.

Qualification testing. Testing performed to verify and demonstrate (often to the customer) that a
software CI or a system meets its specified requirements.

Record. To record information means to set down in a manner that can be retrieved and viewed.
The result may take many forms, including but not limited to hand-written notes, hard-copy or
electronic documents, and data recorded in CASE and project management tools. Information to
be delivered to the customer must be in the form, format, and medium agreed to with the
customer. For information not to be delivered to the customer, the software manager selects the
appropriate form, format, and medium.

Release. A build that is delivered to the customer. (See build.)

NASA-GB-001-96 98

Requirement. A characteristic that a system or software CI must possess in order to be
acceptable to the customer.

Reused code. Code that has undergone no more than 25 percent change; that is, converted code
and transported code. (See converted unit, transported unit.)

Software configuration item (CI). An aggregation of software that satisfies an end use function
and is designated for separate configuration management by the customer or the maintenance
team. Software CIs are selected on the basis of tradeoffs among software function, size, host or
target computers, developer, support concept, plans for reuse, criticality, interface considerations,
need to be separately documented and controlled, and other factors.

Software engineering. A set of activities that results in software products. Software engineering
includes new development, modification, reuse, reengineering, maintenance, or any other
activities that result in software products.

Software engineering environment. The facilities, hardware, software, firmware, procedures,
and documentation needed to perform software engineering. Elements may include but are not
limited to CASE tools, compilers, assemblers, linkers, loaders, operating systems, debuggers,
simulators, emulators, documentation tools, and database management systems.

Software engineering process. An organized set of activities performed to translate user needs
into software products.

Software life cycle. “The period of time that begins when a software product is conceived and
ends when the software is no longer available for use.” (Reference 9) A life cycle is typically
divided into life-cycle phases. (See life-cycle phase.)

Software process. (See software engineering process.)

Software product. Software or associated information created, modified, or incorporated to
satisfy the software requirements. Examples include plans, requirements, design, code, databases,
test information, and manuals.

Software product evaluation. Activities performed by the software team to ensure that in-
process and final software products meet criteria established for those products. (Contrast with
software quality assurance.)

Software project. An undertaking requiring a concerted effort, which is focused on developing
or maintaining a specific software product. Typically a software project has its own funding, cost
accounting, and delivery schedule. That is, the project is the work to be done and the personnel
assigned to perform the work; it is not the same as the product (for example, system) that they are
to produce.

Software quality assurance (SQA). Activities performed by independent QA personnel to
(1) ensure that each activity described in the software plan is performed in accordance with the
software plan, and (2) ensure that each software product required by the organization or by
software requirements exists and has undergone software product evaluations, testing, and
corrective action as required. (Contrast with software product evaluation.)

Software system. A system consisting solely of software and possibly the computer equipment
on which the software operates.

99 NASA-GB-001-96

Software team. The group that engineers software products (including new development,
modification, reuse, reengineering, maintenance, or any other activity that results in software
products).

Software test environment. The facilities, hardware, software, firmware, procedures, and
documentation needed to perform qualification, and possibly other, testing of software. Elements
may include but are not limited to simulators, code analyzers, test plan generators, and path
analyzers, and may also include elements used in the software engineering environment.

Software transition. The set of activities that enables responsibility for software engineering to
pass from one organization, usually the organization that performs initial software development,
to another, usually the organization that will perform sustaining engineering.

Software unit. Smallest physical element of software processed by source code translators,
compilers, and assemblers.

Standard. Written criteria used to develop and evaluate a product or to provide and evaluate a
service. (Contrast with policy, procedure.)

Sustaining engineering. Maintenance and enhancement of an operational product. (See
maintenance, enhancement.)

System. Operational entity composed of a set of interrelated and cohesive configuration items
(CIs). (See configuration item (CI).)

Technology change management. “... [I]dentifying, selecting, and evaluating new technologies,
and incorporating effective technologies into the organization. The objective is to improve
software quality, increase productivity, and decrease cycle time for product engineering.”
(Reference 22)

Technology infusion. (Used synonymously with technology transfer; see technology transfer.)

Technology management. (See technology change management.)

Technology transfer. The successful importing or exporting of technology from lab to practice
or from practice to practice.

Technology utilization. The application and integration of appropriate technologies in software
efforts.

Timebox. A subdivision of a release created to achieve a unit of production that is manageable in
size, complexity, staffing, and duration. It is a planning construct that controls functionality
delivered by fixing resources and time.

Transported unit. Existing unit that is used verbatim (except for possible changes to the
development history for traceability). Its origin is usually external to the project. (Contrast with
new unit, adapted unit, converted unit.)

Unit. (See software unit.)

Validation. “The process of evaluating software during or at the end of the software
development process to determine whether it satisfies specified requirements.” (Reference 9)
(Contrast with verification.)

NASA-GB-001-96 100

Verification. “The process of evaluating software to determine whether the products of a given
development phase [or activity] satisfy the conditions imposed at the start of that phase [or
activity].” (Reference 9) (Contrast with validation.)

Walkthrough. Detailed technical presentation of a limited aspect or portion of a product. These
presentations are usually made by the product’s developer. (Contrast with inspection.)

101 NASA-GB-001-96

Appendix B. Building for Reuse

euse can apply to people, code, processes, requirements, and design, as well as to plans,
standards, and test scripts. Although a recent study of NASA software (Reference 1)
indicated that most reuse at the Agency focuses solely on code, reusing any of these

resources in the development of a new system is appropriate when the result will be improved
reliability, productivity, and maintainability without a negative impact on performance or
requirements satisfaction. Planning for reuse maximizes its benefits; therefore, design software
projects for reuse from the outset. During the requirements definition and analysis and design
phases, for example, developers need to identify potentially reusable architectures, designs, code,
and approaches. To facilitate this process, provide developers with the structure and tools that
will assist them in finding and reusing existing components and architectures rather than
developing new software from scratch. Several activities can be performed throughout the life
cycle to enable reuse:

• Perform domain analysis by examining the application domain to identify common
requirements and functions. The result is a standard, general architecture or model
that incorporates the common functions of a specific applications area and can be
tailored to accommodate differences among individual projects.

• Domain analysis enables requirements generalization, which involves preparing
requirements and specifications so that they cover a selected family of projects or
missions.

• During the design phase, explicitly design for reuse by providing modularity, standard
interfaces, and parameterization.

• Place reusable source code in a reuse library, along with the associated requirements,
specifications, design documentation, and test data. Such a library should also contain
a search facility that enables varied access to the software (for example, by keyword
or by name).

• A final activity that enables reuse on future projects involves the application of reuse
preservation techniques during the maintenance and operations phase. The
maintenance team should avoid making quick fixes, which can negatively affect the
reusability of the system. Rather, they should apply many of the same design practices
that promote reuse during software development. Alternatively, a separate
maintenance team might be established to maintain only the software in a reusable
software library. The team would notify projects that incorporate software from the
library of any changes to that software.

Systems employing a high percentage of reused software typically still undergo each phase of the
full development life cycle, but certain reviews and documents may be consolidated and phase
schedules collapsed or overlapped (see Figure Appendix B. –1). Reusing design, documentation,
and code written for a previous project (and perhaps adapting it to some degree for use in the
system to be developed) requires less effort than creating entirely new products.

R

NASA-GB-001-96 102

Test Procedures
and Drivers

Generators and
Components

Generic
Architecture

Generic System
Operations Concept

Domain Model

Test

Code

Design

Requirements
Analysis

Requirements
Definition

Asset Test

Domain
Implementation

Domain
Design

Domain
Analysis

Context
Analysis

Reuse Production

Domain
Engineering

Reusable Software
Library

Application
Engineering

Reuse
Consumption

Reuse Preservation

Existing Systems

Figure Appendix B. –1. High-Reuse Life-Cycle Model

103 NASA-GB-001-96

Appendix C. COTS, GOTS, Reused, and Other NDI
Software Products

his appendix provides guidance to the software manager for satisfying the requirements of
this guidebook when applied to incorporating COTS, GOTS, reused, and other NDI
products.

Appendix C. .1 COTS Software Products

Using COTS products involves cultural implications. For example, in making a decision to
incorporate COTS software, stakeholders must first be willing to accept the capabilities it
provides. Although it is possible to negotiate with a vendor to obtain and modify the source code,
in so doing vendor support will be lost, and the system will be inconsistent with future product
releases.

When considering the use of a COTS product, conduct the following activities during the
activities indicated:

• Prototype during requirements definition and analysis to evaluate the product’s
capabilities and performance. Whereas prototyping typically is conducted to clarify
requirements or define a user interface, here it is performed to assess whether the
product meets already defined functionality and performance requirements. Prototype
to analyze the performance of the product, to assess its capabilities in relation to the
requirements, and to evaluate its ease of use. Conduct this activity as early as possible
in the life cycle, because the resulting decision on whether to use a COTS product
may affect the overall system architecture. Defining the system architecture thus
becomes an iterative step that evolves based on the results of the prototyping efforts,
because only a certain requirement or set of requirements may be satisfied by COTS
capabilities.

• As soon as prototyping results indicate that use of a COTS product is appropriate,
plan for its interfaces to other COTS products or to the rest of the system. The
input/output requirements of the COTS product must be carefully and completely
defined and understood, so that its interfaces to other components, custom as well as
COTS, can be created correctly. At this point, assess the following:

– The effort required to develop the interface software versus the effort required to
custom develop all the code

– The maintainability of the COTS software

– The reliability of the COTS software

– The quality and reliability of vendor support (which will be crucial to successful
implementation)

T

NASA-GB-001-96 104

During design, address the connections to COTS products in the same way as other system
interfaces. Because no design products exist for COTS software, devise artifacts that provide the
traceability from COTS products to requirements.

During implementation, no code will be written for the COTS products themselves; however,
testing becomes an issue because a COTS product cannot be tested at the unit level (that is, as in
unit testing of custom software). The test plan must thus focus on the interfaces to COTS
products. Apply additional rigor in analyzing the test output. Do not assume that less testing
effort will be required for a COTS product; rather, the effort typically applied at the unit and
module levels will simply be applied to testing at a higher level for COTS interfaces. If test
results indicate that a COTS portion of the system is not performing as required, obtain vendor
support in troubleshooting and correcting the problem.

Throughout the development cycle, reassess the selection of a COTS product when requirements
changes affect a part of the architecture that is satisfied by that product.

Continually stay abreast of and reassess new versions of COTS products. Conduct additional
prototyping to evaluate their use and enable the project to take advantage of new capabilities or
to recognize possible changes in system architecture. However, at some point in the life cycle, it
will be necessary to finalize the version selection and proceed with development, regardless of
new capabilities that may become available. If using a multi-release approach, allow flexibility in
the design to facilitate the upgrade of COTS products assigned to later releases.

During operations, weigh the need for capabilities provided by new versions of the COTS
software against a possible lack of vendor support for older versions. For operational systems
with multi-site installations, apply rigorous configuration management to ensure version control.

Managing a project that comprises predominantly COTS products is similar to managing a
custom-development project. All of the same good management practices apply here as well.
However, package vendors are a source of risk that needs special attention. When a project
selects a package to be part of a system, it is buying a long-term relationship with a vendor.
Understanding a vendor's financial stability, track record, and long-term strategy can be as
important as understanding the vendor’s product. Not only must the project develop a partnership
with its vendors, but it must also develop a partnership with the contracting and procurement side
of its own organization. Software project managers must acquire a level of business
understanding well beyond that needed in conventional development to successfully manage the
project.

This life-cycle concept requires the formation of a well-integrated team consisting of end-users,
domain experts, software engineers, independent testers, a system administrator, and a
procurement official, all coordinated by a project leader. The team roles must remain intact for
the entire system life cycle, and team members must be empowered to make decisions as to
which system requirements are critical. Many of the traditional roles change slightly or require
different skills. In addition, the project team includes two new roles, the system administrator and
a procurement official, who play significant roles in comparison to the minimal support needed
in these areas on traditional software development projects. A capable and interested
procurement official and systems administrator will be great assets to the project. If possible,
arrangements should be made to have a single procurement official and a system administrator

105 NASA-GB-001-96

assigned to the project. Every effort should be made to make them aware of project needs and to
welcome them as members of the team.

The primary project roles are as follows:

End-User. The end-users are the people who will be using the system operationally. They have a
clear understanding of the requirements and the operational environment and are empowered to
negotiate requirements changes and represent the end-user organization.

Domain expert. Domain experts have extensive experience in the problem domain and are aware
of existing packages that are available within the domain. They have experience with, or are at
least aware of, other package-based systems within the domain from which architectures can be
reused.

Software engineer. Software engineers or developers are responsible for developing glueware
and integrating the packages. They are responsible for engineering a solution that meets the
customer’s and end-users’ quality expectations. It is best if the software engineers have some
experience with COTS integration or have specific experience with the packages being used.

Independent tester. Independent testers are responsible for verifying that the system meets its
requirements. Experience with the application domain, incremental testing, and black-box testing
is helpful.

Procurement officer. Procurement officers are responsible for obtaining demonstration copies for
evaluation; purchasing selected products and negotiating for extensions of demonstration copies
until official receipt of product; monitoring and extending license expiration dates. They are
responsible for keeping the project point-of-contact informed of expected product arrival dates
and the terms of the contracts.

System administrator. System administrators are responsible for installing COTS products as
they are received and setting up accounts as they are needed. They can also help troubleshoot
problems with hardware/package compatibility. It is critical that a system administrator be
available to provide services immediately upon request, so it is best if one is dedicated to the
project.

Appendix C. .2 Evaluating COTS, GOTS, Reused, and Other NDI
Software Products

The software manager specifies in the software plan the criteria for evaluating COTS, GOTS,
reused, and other NDI software products for use in fulfilling software requirements. General
criteria are the software product’s ability to meet specified requirements and cost-effectiveness
over the life of the system. Examples of specific criteria include but are not limited to the
following:

• Ability to provide required capabilities and meet required constraints

• Ability to provide required safety, security, and privacy

• Reliability and maturity, as evidenced by an established track record

• Testability

• Interoperability with other system and system-external elements

NASA-GB-001-96 106

• Fielding issues, including:

– Restrictions on copying and distributing the software or documentation

– License or other fees applicable to each copy

• Maintainability

– Likelihood the software product will need to be changed

– Feasibility of accomplishing that change

– Availability and quality of documentation and source files

– Likelihood that the supplier will continue to support the current version

– Impact on the system if the current version is not supported

– The customer’s data rights to the software product

 Warranties available

• Short- and long-term cost impacts of using the software product

• Technical, cost, and schedule risks and tradeoffs in using the software product

Appendix C. .3 Guidelines for Performing Required Activities
Involving COTS, GOTS, Reused, and Other NDI Software
Products

The following guidelines are provided to help interpret and satisfy the requirements to perform
life-cycle activities:

• Any software product required by this document may be a COTS, GOTS, reused, or
other NDI software product as long as it meets the criteria established in the software
plan. The software product may be used as is or modified.

• When COTS, GOTS, reused, or other NDI software has been selected to be
incorporated into the delivered software product, some requirements in this document
must have special interpretation. Table Appendix C. –1 provides this interpretation.
Key issues are whether the software will be modified, whether the unmodified
software constitutes an entire software CI or only one or more software units, and
whether the unmodified software has a positive performance record. The table is
presented in a conditional manner: If an activity in the left column is required for a
given type of software, the table tells how to interpret the activity for COTS, GOTS,
reused, or other NDI software of that type.

107 NASA-GB-001-96

Table Appendix C. –1. Guidelines for Using COTS, GOTS, Reused, and Other NDI Software
Products

(1 of 2)

Interpretation

Software CIs To Be Used
Unmodified

Software Components To Be Used
Unmodified

Required
Activity

Positive
Performance

Record

No or Poor
Performance

Record

Positive
Performance

Record

No or Poor
Performance

Record

Software Components
Being Modified for or

During the Project

Software project
planning

Include the activities in this table in project plans.

Software CI
requirements
definition and
analysis

Specify the project-specific
requirements the software CI must
meet; verify through records or retest
that the software CI can meet them.

Consider the component’s capabilities and characteristics in
specifying the requirements for the software CI of which it is a part.

Software CI-wide
design

No requirement: the software CI-wide
design decisions have already been
made.

Consider the component’s capabilities and characteristics in
designing software CI behavior and making other software CI-wide
design decisions.

Software CI
architectural
design

No requirement: the software CI’s
architecture is already defined.

Include the component in the software CI architecture and allocate
software CI requirements to it.

Software CI
detailed design

No requirement: the software CI’s
detailed design is already defined.

No requirement: the component is
already designed.

Modify the component’s
design as needed.

Software
implementation

No requirement: the software for the
software CI’s components is already
implemented.

No requirement: the software for the
component is already implemented.

Modify the software for
the component.

Unit testing No requirement:
the software CI’s
units are already
tested.

Perform
selectively if in
question and
units are
accessible.

No requirement:
the unit is
already tested.

Perform this testing.

Integration and
testing

No requirement:
the software CI’s
components are
already
integrated.

Perform
selectively if in
question and
components are
accessible.

Perform except
where integration
is already tested
or proven.

Perform this testing.

Software CI
qualification
testing

No requirement:
software CI is
already tested
and proven.

Perform this
testing.

Include the component in software CI qualification testing.

NASA-GB-001-96 108

Table Appendix C. –1. Guidelines for Using COTS, GOTS, Reused, and Other NDI Software
Products

(2 of 2)

Interpretation

Software CIs To Be Used
Unmodified

Software Components To Be Used
Unmodified

Required Activity Positive
Performance

Record

No or Poor
Performance

Record

Positive
Performance

Record

No or Poor
Performance

Record

Software Components
Being Modified for or

During the Project

Preparation for
Software Delivery

Include the software for the software CI or component in the executable software; prepare source files for
the software CI or component, if available; include version descriptions; handle any license issues;
prepare or provide as-built design descriptions for software whose design is known; cover use of the
software CI or component, as appropriate, through existing, new, or revised user or operator manuals;
install the software CI or component at the support site; demonstrate regenerability if source is available;
include the training offered.

Software project
close-out

Apply to activities performed and software products prepared, modified, or used in incorporating this
software.

Software product
V&V

Apply to software products prepared or modified in incorporating this software; for software products used
unchanged, apply unless a positive performance record or evidence of past evaluations indicates that
such an V&V would be duplicative.

Software
configuration
management

Apply to all software products prepared, modified, or used in incorporating this software.

Software quality
assurance

Apply to all activities performed and all software products prepared, modified, or used in incorporating this
software.

Milestone reviews Cover the software products prepared or modified in incorporating this software; explicitly discuss COTS,
GOTS, reused, and other NDI products.

Software process
improvement

Apply to all activities performed in engineering this software.

System
requirements
analysis

Consider software’s capabilities in defining the system and operations concept and system requirements.

Use test or
performance
records to
confirm ability to
meet needs.

Test to confirm
ability to meet
needs.

Use test or
performance
records to
confirm ability to
meet needs.

Test to confirm
ability to meet
needs.

Use tests or records to
determine potential to
meet needs.

System-wide
design

Consider the software’s capabilities and characteristics in designing system behavior and in making other
system-wide design decisions.

System
architectural
design

Include the software CI in the system
architecture; allocate system
requirements to it.

Consider the component’s capabilities and characteristics in
designating software CIs and allocating system requirements to
them.

Software CI and
hardware CI
integration and
testing

Perform, except
where
integration is
already tested or
proven.

Include the
software CI in
software CI and
hardware CI
integration and
testing.

Include the component in software CI and hardware CI integration
and testing.

System
qualification
testing

Include the software CI in system
qualification testing.

Include the component in system qualification testing.

109 NASA-GB-001-96

Appendix D. System-Level Considerations

hen the software CI is part of a larger hardware-software system for which the
organization has system-level responsibilities, a number of additional considerations
must be taken into account. In the following paragraphs regarding system-level

activities, if the software covered by this document is part of a hardware-software system for
which this document covers only the software portion, participate means take part in, as
described in the software plan. If the software (and the computers on which it executes) is
considered to constitute a system, participate means be responsible for.

Appendix D. .1 System Requirements Analysis

The software requirements analysts participate in system requirements analysis in accordance
with the requirements discussed in the subsections that follow.

Analysis of User Input

The software requirements analysts participate in analyzing user input provided by the customer
to gain an understanding of user needs. This input may take the form of need statements, surveys,
problem reports and change requests, feedback on prototypes, interviews, or other user input or
feedback. This input is used to formulate the system and operations concept and the system
requirements.

System and Operations Concept

The software requirements analysts participate in defining and recording the operational concept
for the system. The result includes all applicable items in the system and operations concept
documentation standard, including the preparation of any required operational scenarios.

System Requirements

The software requirements analysts participate in defining and recording the requirements to be
met by the system and the methods to be used to ensure that each requirement is met. The result
includes all applicable items in the system requirements specification (SRS) documentation
standard.

If a system consists of subsystems (or CIs), the activity in this subsection is intended to be
performed iteratively with the system design activities to define system requirements, design the
system and identify its subsystems, define the requirements for and interfaces among those
subsystems, design the subsystems, identify their components, and so on.

Appendix D. .2 System Design

The software requirements analysts and software design architects participate in system design in
accordance with the requirements discussed in the subsections that follow.

W

NASA-GB-001-96 110

System-Wide Design Decisions

The software requirements analysts and software design architects participate in defining and
recording system-wide design decisions (that is, decisions about the system’s behavioral design
and other decisions that affect the selection and design of system components). The result
includes all applicable items in the system-wide design section of the system design specification
(SDS) documentation standard.

Design decisions remain at the discretion of the software requirements analysts and software
design architects unless formally converted to requirements. The software team is responsible for
fulfilling all requirements and demonstrating this fulfillment through qualification testing.
Design decisions act as software team-internal “requirements,” to be implemented, imposed on
contractors (if applicable), and confirmed by software team-internal testing; but their fulfillment
need not be demonstrated to the customer.

System Architectural Design

The software requirements analysts and software design architects participate in defining and
recording the architectural design of the system (identifying the components of the system, their
interfaces, and a concept of execution among them) and the traceability between the system
components and system requirements. The result includes all applicable items in the architectural
design and traceability sections of the SDS documentation standard.

Appendix D. .3 Software CI and Hardware CI Integration and Testing

Software CI and hardware CI integration and testing means integrating software CIs with
interfacing hardware CIs and software CIs, testing the resulting groupings to determine whether
they work together as intended, and continuing this process until all software CIs and hardware
CIs in the system are integrated and tested. The software qualification testers participate in
developing and recording test plans (in terms of inputs, expected results, and V&V criteria), test
procedures, and test data for conducting software CI and hardware CI integration and testing. The
test plans cover all aspects of the system-wide and system architectural design. The software
qualification testers participate in software CI and hardware CI integration and testing in
accordance with the software CI and hardware CI integration test plans and procedures. The
software team participates in analyzing the results of software CI and hardware CI integration
and testing. Software-related analysis and test results are recorded in appropriate product V&V
records files. The software team makes necessary revisions to the software, participates in
retesting, and updates other software products as needed, based on the results of software CI and
hardware CI integration and testing.

Appendix D. .4 System Qualification Testing

System qualification testing is performed to demonstrate (often to the customer) that system
requirements have been met. It covers the SRS. This testing contrasts with software team-internal
system testing, performed as the final stage of software CI and hardware CI integration and
testing.

111 NASA-GB-001-96

The persons responsible for fulfilling the requirements in this section are not the persons who
performed detailed design or implementation of software in the system, although those persons
may participate, for example, by contributing test plans that rely on knowledge of the system’s
internal implementation.

The software qualification testers participate in developing and recording the test preparations,
test plans, and test procedures to be used for system qualification testing and the traceability
between the test plans and the system requirements. For software systems, the results include all
applicable items in the software CI qualification test plan documentation standard. The software
qualification testers participate in preparing the test data needed to carry out the test plans and in
providing the customer advance notice of the time and location of system qualification testing.
They participate in system qualification testing in accordance with the system test plans and
procedures. The software team participates in analyzing and recording the results of system
qualification testing. For software systems, the result includes all applicable items in the software
CI qualification test report documentation standard. The software team makes necessary
revisions to the software, provides the customer advance notice of retesting, participates in
retesting, and updates other software products as needed, based on the results of system
qualification testing.

113 NASA-GB-001-96

Abbreviations and Acronyms

AT acceptance test or testing

ATRR acceptance test readiness review

BDR build design review

BQT build qualification testing

CASE computer-aided software engineering

CDR critical design review

CI configuration item

CM configuration management

COCOMO Constructive Cost Model

COTS commercial-off-the-shelf

CCB configuration control board

DFD data flow diagram

DR discrepancy report

FCA functional configuration audit

FQT formal qualification testing

GOTS government-off-the-shelf

GSFC Goddard Space Flight Center

HQ headquarters

IDR internal DR

IRM Information Resources Management

IV&V independent validation and verification

JAD joint application development

JPL Jet Propulsion Laboratory

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

NDI non-developed item

NMI NASA Management Instruction

O&M operations and maintenance

ORR operational readiness review

NASA-GB-001-96 114

OSMA Office of Safety and Mission Assurance

PAL process asset library

PCA physical configuration audit

PDR preliminary design review

QA quality assurance

QTRR qualification test readiness review

RCR release contents review

RDR release design review

RQTRR release qualification test readiness review

RRR release requirements review

SCM software configuration management

SCR system concept review

SDR system design review

SDS system design specification

SEI Software Engineering Institute

SEL Software Engineering Laboratory

SPR system or software problem report

SQA software quality assurance

SRR system requirements review

SRS system requirements specification

SSR software specification review

STR system or software trouble report

SWDS software design specification

SWG Software Working Group

SWRS software requirements specification

TBD to be determined

TPM Technical Performance Measurement

V&V validation and verification (also validate and verify)

115 NASA-GB-001-96

References

1. Profile of Software at the National Aeronautics and Space Administration (NASA),
Software Engineering Program, NASA-RPT-004-95, March 1995.

2. Jeletic, K, R. Pajerski, C. Brown, Software Process Improvement Guidebook, Software
Engineering Program, NASA-GB-001-95, January 1996.

3. NASA Software Strategic Plan, NASA Software Program, Fairmont, West Virginia, July
1995.

4. MIL-STD-498, Software Development and Documentation, Department of Defense,
December 5, 1994.

5. Bassman, M., F. McGarry, R. Pajerski, Software Measurement Guidebook, Software
Engineering Program, NASA-GB-001-94, August 1995. Also published as SEL-94-102,
Software Engineering Laboratory, NASA/GSFC, June 1995.

6. Reusable Software Management Plan (SMP) and On-line Help Tool, Software Assurance
Technology Center, NASA/GSFC, http://satc.gsfc.nasa.gov/Documents/smp/
smppage.html.

7. Landis, L., F. McGarry, S. Waligora, et al., Manager’s Handbook for Software
Development (Revision 1), SEL-84-101, Software Engineering Laboratory, NASA/GSFC,
November 1990, http://fdd.gsfc.nasa.gov/mgr_hand/mnghnbk.html.

8. Alberts, C. J., et al., Continuous Risk Management Guidebook (DRAFT version 0.3),
Software Engineering Institute, Carnegie Mellon University, January 1996.

9. ANSI/IEEE-STD-610.12-1990, “IEEE Standard Glossary of Software Engineering

10. Landis, L., S. Waligora, F. McGarry, et al., Recommended Approach to Software
Development (Revision 3), SEL-81-305, Software Engineering Laboratory, NASA/GSFC,
June 1992.

11. Boehm, B., “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, May 1988.

12. Waligora,. S., SEL Package-Based System Development Process, Software Engineering
Laboratory, NASA/GSFC, February 1996, http://fdd.gsfc.nasa.gov/cotsweb.pdf.

13. NASA Software Formal Inspections Guidebook, NASA-GB-A302, August 1993,
accessible from http://www.ivv.nasa.gov/SWG/.

14. Weller, E., “Lessons from Three Years of Inspection Data,” IEEE Software, September
1993.

15. Currit, P. A., M. Dyer, and H. D. Mills, “Certifying the Reliability of Software,” IEEE
Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986, pp. 3–11.

NASA-GB-001-96 116

16. Basili, V, and S. Green, “Software Process Evolution at the SEL,” IEEE Software, Vol.
11, No. 4, July 1994, pp. 58–66.

17. Software Engineering Evaluation System Technical Assessment Procedures and
Workshops, NASA Headquarters, Office of Safety and Mission Assurance, U.S. Army
Missile Command, Redstone Arsenal, Alabama, 1994.

18. NASA Management Instruction 7120.4, “Management of Major System Programs and

19. NASA Handbook 7120.5, “Management of Major System Programs and Projects,”
November 1993.

20. Boehm, B. Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1981.

21. Condon, S., M. Regardie, M. Stark, and S. Waligora, Cost and Schedule Estimation
Report, SEL-93-002, NASA/GSFC, November 1993.

22. Paulk, M, et al., Key Practices of the Capability Maturity Model, Version 1.1, Software
Engineering Institute, Carnegie Mellon University, CMU/SEI-93-TR-25, February 1993.

